

Microsoft® Official Academic Course

Software Development
Fundamentals, Exam 98-361

FMTOC.indd Page i 3/9/11 12:25 PM user-F392FMTOC.indd Page i 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Credits

EDITOR Bryan Gambrel
DIRECTOR OF SALES Mitchell Beaton
EXECUTIVE MARKETING MANAGER Chris Ruel
MICROSOFT SENIOR PRODUCT MANAGER Merrick Van Dongen of Microsoft Learning
EDITORIAL PROGRAM ASSISTANT Jennifer Lartz
CONTENT MANAGER Micheline Frederick
PRODUCTION EDITOR Amy Weintraub
CREATIVE DIRECTOR Harry Nolan
COVER DESIGNER Jim O’Shea
TECHNOLOGY AND MEDIA Tom Kulesa/Wendy Ashenberg

Cover photo: Credit: © Pgiam/iStockphoto

This book was set in Garamond by Aptara, Inc. and printed and bound by Bind Rite Robbinsville.
The cover was printed by Bind Rite Robbinsville.

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers,
MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008,
website http://www.wiley.com/go/permissions.

Microsoft, ActiveX, Excel, InfoPath, Microsoft Press, MSDN, OneNote, Outlook, PivotChart, PivotTable, PowerPoint,
SharePoint, SQL Server, Visio, Visual Basic, Visual C#, Visual Studio, Windows, Windows 7, Windows Mobile, Windows
Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/
or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

The book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, John Wiley & Sons, Inc., Microsoft Corporation, nor their
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200
years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation
of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a
Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we
face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical
conduct within our business and among our vendors, and community and charitable support. For more information,
please visit our website: www.wiley.com/go/citizenship.

ISBN 978-0-470-88911-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

FMTOC.indd Page ii 3/22/11 7:53 PM user-F392FMTOC.indd Page ii 3/22/11 7:53 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Wiley’s publishing vision for the Microsoft Official Academic Course series is to provide
students and instructors with the skills and knowledge they need to use Microsoft technology
effectively in all aspects of their personal and professional lives. Quality instruction is required
to help both educators and students get the most from Microsoft’s software tools and to
become more productive. Thus our mission is to make our instructional programs trusted
educational companions for life.

To accomplish this mission, Wiley and Microsoft have partnered to develop the highest quality
educational programs for Information Workers, IT Professionals, and Developers. Materials cre-
ated by this partnership carry the brand name “Microsoft Official Academic Course,” assuring
instructors and students alike that the content of these textbooks is fully endorsed by Microsoft,
and that they provide the highest quality information and instruction on Microsoft products.
The Microsoft Official Academic Course textbooks are “Official” in still one more way—they
are the officially sanctioned courseware for Microsoft IT Academy members.

The Microsoft Official Academic Course series focuses on workforce development. These
programs are aimed at those students seeking to enter the workforce, change jobs, or embark
on new careers as information workers, IT professionals, and developers. Microsoft Official
Academic Course programs address their needs by emphasizing authentic workplace scenarios
with an abundance of projects, exercises, cases, and assessments.

The Microsoft Official Academic Courses are mapped to Microsoft’s extensive research and
job-task analysis, the same research and analysis used to create the Microsoft Technology
Associate (MTA) and Microsoft Certified Information Technology Professional (MCITP)
exams. The textbooks focus on real skills for real jobs. As students work through the projects
and exercises in the textbooks, they enhance their level of knowledge and their ability to apply
the latest Microsoft technology to everyday tasks. These students also gain resume-building cre-
dentials that can assist them in finding a job, keeping their current job, or in furthering their
education.

The concept of life-long learning is today an utmost necessity. Job roles, and even whole
job categories, are changing so quickly that none of us can stay competitive and productive
without continuously updating our skills and capabilities. The Microsoft Official Academic
Course offerings, and their focus on Microsoft certification exam preparation, provide a
means for people to acquire and effectively update their skills and knowledge. Wiley sup-
ports students in this endeavor through the development and distribution of these courses as
Microsoft’s official academic publisher.

Today educational publishing requires attention to providing quality print and robust elec-
tronic content. By integrating Microsoft Official Academic Course products, WileyPLUS, and
Microsoft certifications, we are better able to deliver efficient learning solutions for students
and teachers alike.

Bonnie Lieberman

General Manager and Senior Vice President

Foreword from the Publisher

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only) | iii

FMTOC.indd Page iii 3/9/11 12:25 PM user-F392FMTOC.indd Page iii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Welcome to the Microsoft Official Academic Course (MOAC) program for Software
Development Fundamentals. MOAC represents the collaboration between Microsoft
Learning and John Wiley & Sons, Inc. publishing company. Microsoft and Wiley teamed up
to produce a series of textbooks that deliver compelling and innovative teaching solutions to
instructors and superior learning experiences for students. Infused and informed by in-depth
knowledge from the creators of Microsoft products, and crafted by a publisher known world-
wide for the pedagogical quality of its products, these textbooks maximize skills transfer in
minimum time. Students are challenged to reach their potential by using their new technical
skills as highly productive members of the workforce.

Because this knowledge base comes directly from Microsoft, creator of the Microsoft Certified
Technology Specialist (MCTS), Microsoft Certified Professional (MCP), and Microsoft
Technology Associate (MTA) exams (www.microsoft.com/learning/certification), you are sure
to receive the topical coverage that is most relevant to your personal and professional success.
Microsoft’s direct participation not only assures you that MOAC textbook content is accurate
and current; it also means that you will receive the best instruction possible to enable your
success on certification exams and in the workplace.

■ The Microsoft Official Academic Course Program
The Microsoft Official Academic Course series is a complete program for instructors and institutions
to prepare and deliver great courses on Microsoft software technologies. With MOAC, we recognize
that, because of the rapid pace of change in the technology and curriculum developed by Microsoft,
there is an ongoing set of needs beyond classroom instruction tools for an instructor to be ready to
teach the course. The MOAC program endeavors to provide solutions for all these needs in a sys-
tematic manner in order to ensure a successful and rewarding course experience for both instructor
and student—technical and curriculum training for instructor readiness with new software releases;
the software itself for student use at home for building hands-on skills, assessment, and validation of
skill development; and a great set of tools for delivering instruction in the classroom and lab. All are
important to the smooth delivery of an interesting course on Microsoft software, and all are pro-
vided with the MOAC program. We think about the model below as a gauge for ensuring that we
completely support you in your goal of teaching a great course. As you evaluate your instructional
materials options, you may wish to use this model for comparison purposes with available products:

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Preface

iv |

FMTOC.indd Page iv 3/9/11 12:25 PM user-F392FMTOC.indd Page iv 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

■ Pedagogical FeaturesPedagogical Features

The MOAC textbook for Software Development Fundamentals is designed to cover all the
learning objectives for that MTA exam 98-361, which is referred to as its “exam objective.”
The Microsoft Technology Associate (MTA) exam objectives are highlighted throughout the
textbook. Many pedagogical features have been developed specifically for the Microsoft Official
Academic Course program.

Presenting the extensive procedural information and technical concepts woven throughout the
textbook raises challenges for the student and instructor alike. The Illustrated Book Tour that
follows provides a guide to the rich features contributing to the Microsoft Official Academic Course
program’s pedagogical plan. The following is a list of key features in each lesson designed to
prepare students for success as they continue in their IT education, on the certification
exams, and in the workplace:

• Each lesson begins with a Lesson Skill Matrix. More than a standard list of learning
objectives, the Lesson Skill Matrix correlates each software skill covered in the lesson to
the specific exam objective.

• Concise and frequent step-by-step Exercises teach students new features and provide
an opportunity for hands-on practice. Numbered steps give detailed, step-by-step
instructions to help students learn software skills.

• Illustrations—in particular, screen images—provide visual feedback as students work
through the exercises. The images reinforce key concepts, provide visual clues about the
steps, and allow students to check their progress.

• Lists of Key Terms at the beginning of each lesson introduce students to important
technical vocabulary. When these terms are used later in the lesson, they appear in bold
italic type where they are defined.

• Engaging point-of-use Reader Aids, located throughout the lessons, tell students why
this topic is relevant (The Bottom Line), provide students with helpful hints (Take Note).
Reader Aids also provide additional relevant or background information that adds value
to the lesson.

• Certification Ready features throughout the text signal students where a specific
certification objective is covered. They provide students with a chance to check their
understanding of that particular MTA objective and, if necessary, review the section
of the lesson where it is covered. MOAC offers complete preparation for MTA
certification.

• End-of-Lesson Questions: The Knowledge Assessment section provides a variety of
multiple-choice, true-false, matching, and fill-in-the-blank questions.

• End-of-Lesson Exercises: Competency Assessment case scenarios, Proficiency Assessment
case scenarios, and Workplace Ready exercises are projects that test students' ability to
apply what they've learned in the lesson.

Illustrated Book Tour

| v
www.wiley.com/college/microsoft or

call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

FMTOC.indd Page v 23/03/11 7:58 PM user-F391FMTOC.indd Page v 23/03/11 7:58 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

vi | Illustrated Book Tour

■ Lesson Features

Introduction to Object-
Oriented Programming

LESSON2

You are a software developer for the Northwind Corporation. You work as part of a team
to develop computer programs that solve complex business problems. Any programs
that you write must be easy to understand and maintain over a long period of time.
Therefore, you need to develop programs using techniques that encourage code reuse,
extensibility, and collaboration. Also, rather than thinking about your programs primarily
as lists of methods, you opt to model them on real-world business concepts, such as
customers, products, suppliers, and the interactions among them.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Objects Understand the fundamentals 2.1
 of classes.

Understanding Values and Understand computer storage and 1.1
References data types.

Understanding Encapsulation Understand encapsulation. 2.4

Understanding Inheritance Understand inheritance. 2.2

Understanding Polymorphism Understand polymorphism. 2.3

Understanding Interfaces Understand encapsulation. 2.4

32

K E Y T E R M S

access modifier

accessors

abstract classes

auto implemented properties

class

constructors

delegates

encapsulation

events

inheritance

interfaces

method

namespace

objects

polymorphism

properties

reference type

sealed classes

signature

static numbers

value type

c02Introductionto ObjectOriented32 Page 32 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 9

C# provides several built-in data types that you can use in your programs. You can also define
new types by defining a data structure, such as a class or a struct. This chapter focuses on
some of the most commonly used built-in data types.

Table 1-3 lists several commonly used built-in data types available in C#. The sizes listed in
the table refer to a computer running a 32-bits operating system such as Windows 7, 32-bit.
For a 64-bits operating system, such as Windows 7 64-bit, these sizes will be different.

XREF

You can find more
information about how
to create your own data
types in Lesson 2.

Table 1-3

Commonly used built-in data
types in C#

DATA TYPE SIZE RANGE OF VALUES

byte 1 byte 0 to 255

char 2 bytes U�0000 to U�ffff (Unicode characters)

short 2 bytes �32,768 to 32,767

int 4 bytes �2,147,483,648 to 2,147,483,647

long 8 bytes �9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

float 4 bytes �1.5 � 10-45 to �3.4 � 1038

double 8 bytes �5.0e�324 to �1.7e308

bool 2 bytes True or false

string - Zero or more Unicode characters

All the data types listed in Table 1-3 are value types except for string, which is a reference
type. The variables that are based directly on the value types contain the value. In the case
of the reference type, the variable holds the address of the memory location where the actual
data is stored. You will learn more about the differences between value types and reference
types in Lesson 2.

The unsigned versions
of short, int, and long
are ushort, uint, and
ulong, respectively. The
unsigned types have the
same size as their signed
versions but store much
larger ranges of only
positive values.

TAKE NOTE*

An array in C# is commonly used to represent a collection of items of similar type. A sample
array declaration is shown in the following code:

int[] numbers = { 1, 2, 3, 4, 5 };

This declaration creates an array identified by the name numbers. This array is capable of
storing a collection of five integers. This declaration also initializes each of the array items
respectively by the numbers 1 through 5.

Any array item can be directly accessed by using an index. In the .NET Framework, array
indexes are zero-based. This means that to access the first element of an array, you use the
index 1; to access the second element, you use the index 2, and so on.

To access an individual array element, you use the name of the array followed by the index
enclosed in square brackets. For example, numbers[0] will return the value 1 from the above-
declared array, and numbers[4] will return the value 5. It is illegal to access an array outside

UNDERSTANDING ARRAYS

An array is a collection of items in which each item can be accessed by using a unique
index.

c01IntroductiontoProgramming.ind9 Page 9 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

As you can see, this flowchart lists in the correct order all the necessary steps to perform the
operation. The flow of control starts with the start symbol and ends at the stop symbol. The
process and input/output operation symbols always have a single entry and a single exit. In
contrast, the decision symbol has a single entry but multiple exits. You can test a flowchart by
performing a “dry run.” In a dry run, you manually trace through the steps of the flowchart
with test data to check whether the correct paths are being followed.

INTRODUCING DECISION TABLES
When an algorithm involves a large number of conditions, decision tables are a more com-
pact and readable format for presenting the algorithm. Table 1-2 presents a decision table for
calculating a discount. This table generates a discount percentage depending on the quantity
of product purchased. The bold lines in the decision table divide the table in four quadrants.
The first quadrant (top left) specifies the conditions (“Quantity � 10,” etc.). The second
quadrant (top right) specifies the rules. The rules are the possible combinations of the out-
come of each condition. The third quadrant (bottom left) specifies the action (“Discount,”
in this case), and the last quadrant (bottom right) specifies the action items corresponding to
each rule.

Introduction to Programming | 3

Figure 1-1

A simple flowchart that com-
pares two numbers and out-
puts the larger of the two

No

Yes

Input y

Output y

Input x

Output x

x > y?

START

STOP

For example, Figure 1-1 shows a flowchart that inputs two numbers, compares them, and
then outputs the larger number.

c01IntroductiontoProgramming.ind3 Page 3 2/25/11 1:55:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Informative

Diagrams

Lesson Skill Matrix

Key Terms

Cross Reference

Reader Aid

FMTOC.indd Page vi 3/10/11 10:00 PM user-F393FMTOC.indd Page vi 3/10/11 10:00 PM user-F393 /Users/user-F393/Desktop/Users/user-F393/Desktop

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Illustrated Book Tour | vii

44 | Lesson 2

 2. Modify the code of the Program class to the following:

 class Program
 {
 static void Main(string[] args)
 {
 Rectangle rect = new Rectangle
 { Length = 10.0, Width = 20.0 };
 Console.WriteLine(“Shape Name: {0}, Area: {1}”,
 Rectangle.ShapeName,
 rect.GetArea());
 }
 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
the name and area of the shape.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

When an instance of a class is created, a separate copy is created for each instance field, but
only one copy of a static field is shared by all instances.

A static member cannot be referenced through an instance object. Instead, a static member
is referenced through the class name (such as Rectangle.ShapeName in the above exercise).
Note that it is not possible to use the this keyword reference with a static method or property
because the this keyword can only be used to access instance objects.

CERTIFICATION READY
Do you understand the
fundamentals of classes?
2.1

A value type directly stores data within its memory. Reference types, on the other hand, store
only a reference to a memory location; here, the actual data is stored at the memory location being
referred to. Most built-in elementary data types (such as bool, int, char, double, etc.) are value types.
User-defined data types created by using the keyword struct are value types as well. Reference types
include the types created by using the keywords object, string, interface, delegate, and class.

Understanding Structs

The keyword struct is used to create user-defined types that consist of small groups of
related fields. Structs are value types—as opposed to classes, which are reference types.

Structs are defined by using the keyword struct, as shown below:

public struct Point
{
 public double X, Y;
}

Structs can contain most of the elements that classes can contain, such as constructors,
methods, properties, etc. However, as you’ll learn in the next section, structs are value types,

■ Understanding Values and References

A value type directly stores a value, whereas a reference type only stores a reference to an
actual value.THE BOTTOM LINE

c02Introductionto ObjectOriented44 Page 44 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 77

BubbleSort works by comparing two elements to check whether they are out of order; if they
are, it swaps them. The algorithm continues to do this until the entire list is in the desired
order. BubbleSort gets its name from the way the algorithm works: As the algorithm progresses,
the smaller items are “bubbled” up.

Let’s visualize BubbleSort with the help of an example. Say you want to arrange all the items
in the following list in ascending order: (20, 30, 10, 40). These items should be arranged
from smallest to largest. The BubbleSort algorithm attempts to solve this problem in one or
more passes, with each pass completely scanning the list of items. If the algorithm encounters
out-of-order elements, it swaps them. The algorithm finishes when it scans the whole list
without swapping any elements. If there were no swaps, then none of the elements were out
of order and the list has been completely sorted.

Table 3-1

BubbleSort first pass STEP BEFORE AFTER COMMENTS

1 20, 30, 10, 40 20, 30, 10, 40 The algorithm compares the first two
 elements (20 and 30); because they are in
the correct order, no swap is needed.

2 20, 30, 10, 40 20, 10, 30, 40 The algorithm compares the next two
 elements (30 and 10); because they are
out of order, the elements are swapped.

3 20, 10, 30, 40 20, 10, 30, 40 The algorithm compares the next two
 elements (30 and 40); because they are in
the correct order, no swap is needed.

As shown in Table 3-1, at the end of first pass, BubbleSort has performed one swap, and there
is the possibility that the items are not yet completely sorted. Therefore, BubbleSort gives the
list another pass, as depicted in Table 3-2.

STEP BEFORE AFTER COMMENTS

1 20, 10, 30, 40 10, 20, 30, 40 The algorithm compares the first two
 elements (20 and 10); because they are
out of order, the elements are swapped.

2 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (20 and 30); because they are in
the correct order, no swap is needed.

3 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (30 and 40); because they are in
the correct order, no swap is needed.

Table 3-2

BubbleSort second pass

c03Understanding General Softwar77 Page 77 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

4 | Lesson 1

As discussed in the previous section, computers need precise and complete instructions to
accomplish a task. These sets of instructions are called computer programs, or just programs
for short.

At the most basic level, computers use the binary number system to represent information
and code. In this system, each value is represented using only two symbols, 0 and 1.
A computer program written using the binary number system is called binary code.

Using binary code to program a computer is terse and extremely difficult to accomplish for
any non trivial task. Thus, to simplify programming, scientists and computer engineers have
built several levels of abstractions between computers and their human operators. These
abstractions include software (such as operating systems, compilers, and various runtime
systems) that takes responsibility for translating a human-readable program into a machine-
 readable program.

Most modern programs are written in a high-level language such as C#, Visual Basic, or Java.
These languages allow you to write precise instructions in a human-readable form. A language
compiler then translates the high-level language into a lower-level language that can be under-
stood by the runtime execution system.

Each programming language provides its own set of vocabulary and grammar (also known as
syntax). In this course, you’ll learn how to program by using the C# programming language
on the .NET Framework. The .NET Framework provides a runtime execution environment
for the C# program. The Framework also contains class libraries that provide a lot of reusable
core functionality that you can use directly in your C# program.

Table 1-2

A decision table for calculating
discounts

Quantity < 10 Y N N N

Quantity < 50 Y Y N N

Quantity < 100 Y Y Y N

Discount 5% 10% 15% 20%

To find out which action item to apply, you must evaluate each condition to find the match-
ing rule and then choose the action specified in the column with the matching rule. For
example, if the value of “Quantity” in the test data is 75, then the first rule evaluates to “No,”
the second rule evaluates to “No,” and the third rule evaluates to “Yes.” Therefore, you will
pick the action item from the column (N, N, and Y), which sets the discount at 15%.

Introducing C#

C# is a popular high-level programming language that allows you to write computer
programs in a human-readable format. C# is a part of the .NET Framework and benefits
from the runtime support and class libraries provided by the .Framework.

✚ MORE INFORMATION
The .NET Framework provides three major components: a runtime execution environment, a set of class libraries that
provide a great deal of reusable functionality, and language compilers for C#, Visual Basic, and Managed C��. The
.NET Framework supports multiple programming languages and also has support for adding additional languages to
the system. Although the syntax and vocabulary of each language may differ, each can still use the base class libraries
provided by the Framework.

c01IntroductiontoProgramming.ind4 Page 4 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

The Bottom Line Reader Aid

Easy-to-Read

Tables

More information

Reader Aid

FMTOC.indd Page vii 3/9/11 12:25 PM user-F392FMTOC.indd Page vii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

viii | Illustrated Book Tour

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

46 | Lesson 2

its contents are not stored in the variable itself, but rather at the memory location pointed to
by the variable.

COPY VALUE AND REFERENCE TYPES

USE the project you saved in the previous exercise to complete the steps below:

 1. Add the following code after the Rectangle class defi nition to create a Point struct:

 struct Point

 {

 public double X, Y;

 }

 2. Modify the code of the Main method as shown below:

 static void Main(string[] args)

 {

 Point p1 = new Point();

 p1.X = 10;

 p1.Y = 20;

 Point p2 = p1;

 p2.X = 100;

 Console.WriteLine(“p1.X = {0}”, p1.X);

 Rectangle rect1 = new Rectangle

 { Length = 10.0, Width = 20.0 };

 Rectangle rect2 = rect1;

 rect2.Length = 100.0;

 Console.WriteLine(“rect1.Length = {0}”,

 rect1.Length);

 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
the values for p1.X and rect1.Length.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

Here, the first part of the program creates a copy of the value type Point, and the second half
creates a copy of the reference type Rectangle.

Let’s start by analyzing how the copy of a value type is made. To begin, when the following
statement is executed, a new variable p2 is created in memory, and its contents are copied
from the variable p1:

Point p2 = p1;

After this statement is executed, the variable p2 is created, and the content of variable p1 is
copied to variable p2. Both p1 and p2 have their own set of values available in their respective
memory locations. So, when the following statement is executed:

p2.X = 100;

it only affects the value of X corresponding to the memory location of variable p2. The value
of X for variable p1 remains unaffected.

It is possible to create a
struct without using the
new operator. You can
simply say
Point p1;
to create a variable of
the struct type.

TAKE NOTE*

When you copy a refer-
ence type variable to
another variable of the
same type, only the ref-
erences are copied. As
a result, after the copy,
both variables will point
to the same object.

TAKE NOTE*

c02Introductionto ObjectOriented46 Page 46 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05Step-by-Step Exercises

68 | Lesson 3

Software testing is used to assure the quality of the final product. Testing can identify possible
gaps between the system expectations described in the requirements document and actual
 system behavior.

Among the most critical participants in the software testing activity are the testers who verify
the working application to make sure that it satisfies the identified requirements. When these
testers identify any defects in the application, they assign each defect to an appropriate person
who can fix it. For example, a code defect would be assigned back to a developer so he or she
could remedy the error.

Understanding Software Testing

Software testing verifies that the implementation matches the requirements of the system.

Understanding Release Management

The release management activity is used to manage the deployment, delivery, and
 support of software releases.

Release management includes activities such as packaging and deploying the software,
 managing software defects, and managing software change requests.

Major players in the release management activity include the following individuals:

• Release manager: The release manager coordinates various teams and business units to
ensure timely release of a software product.

• Operation staff: The operation staff members make sure that the system is delivered as
promised. This could involve burning DVDs and shipping them as orders are received,
or it could entail maintaining a Software as a Service (SaaS) system on an ongoing basis.
Operation staff are also responsible for releasing any system updates (e.g., bug fixes or
new features).

• Technical support staff: These staffers interact with customers and help solve their
 problems with the system. Technical support can generate valuable metrics about what
areas of the system are most difficult for users and possibly need to be updated in the
next version of the application.

■ Understanding Testing

Software testing is the process of verifying software against its requirements. Testing takes
place after most development work is completed.THE BOTTOM LINE

As previously mentioned, software testing is the process of verifying that a software
 application works as expected and fulfills all its business and technical requirements. When
there is a difference between the expected behavior and the actual behavior of the system,
a software defect (or “bug”) is logged and eventually passed on to an individual who is
 responsible for fixing it.

Software testing may involve both functional and nonfunctional testing. Functional testing
relates to the functional requirements of the system, and it tests those features that make up

CERTIFICATION READY
Do you understand
application lifecycle
management and its
activities?
3.1

c03Understanding General Softwar68 Page 68 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 7

A C# program is made of one or more classes. A class is a set of data and methods. For exam-
ple, the code in Figure 1-3 defines a single class named Program on lines 5 through 11. A
class is defined by using the keyword class followed by the class name. The contents of a class
are defined between an opening brace ({) and a closing brace (}).

Line 3 of the code in Figure 1-3 defines a namespace, Lesson01. Namespaces are used to
organize classes and uniquely identify them. The namespace and the class names are com-
bined together to create a fully qualified class name. For example, the fully qualified class
name for the class Program is Lesson01.Program. C# requires that the fully qualified name
of a class be unique. As a result, you can’t have another class by the name Program in the
namespace Lesson01, but you can have a class by the name Program in another namespace,
say, Lesson02. Here, the class Program defined in the namespace Lesson02 is uniquely identi-
fied by its fully qualified class name, Lesson02.Program.

The .NET Framework provides a large number of useful classes organized into many
namespaces. The System namespace contains some of the most commonly used base classes.
One such class in the System namespace is Console. The Console class provides functionality
for console application input and output. The line 9 of the code in Figure 1-3 refers to the
Console class and calls its WriteLine method. To access the WriteLine method in an unam-
biguous way, you must write it like this:

System.Console.WriteLine(“hello, world!”);

Because class names frequently appear in the code, writing the fully qualified class name every
time will be tedious and make the program verbose. You can solve this problem by using the
C# using directive (see the code in line 1 in Figure 1-3). The using directive allows you to use
the classes in a namespace without having to fully qualify the class name.

The Program class defines a single method by the name Main (see lines 7 to 10 of the code
listing in Figure 1-3). Main is a special method in that it also serves as an entry point to the
program. When the runtime executes a program, it always starts at the Main method. A

Figure 1-3

Program listing with line
 numbers

XREF

You can find more
information on classes
in Lesson 2.

XREF

You can find more
information on methods
in Lesson 2.

Every C# statement must
end with a semicolon (;).

TAKE NOTE*

c01IntroductiontoProgramming.ind7 Page 7 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Certification

Ready Alert
Take Note

Reader Aid

Screen

Images

FMTOC.indd Page viii 3/9/11 12:25 PM user-F392FMTOC.indd Page viii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Illustrated Book Tour | ix

Understanding Databases | 173

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• A relational database organizes information into tables. A table is a list of rows and
columns.

• Relational database design is the process of determining the appropriate relational
database structure to satisfy the business requirements.

• Entity-relationship diagrams are used to model the entities, their attributes, and the
relationships among entities. The entity-relationship diagrams can help you in determine
what data needs to be stored in a database.

• The process of data normalization ensures that a database design is free of any problems
that could lead to loss of data integrity. Most design issues can be resolved by ensuring
that the tables satisfy the requirements of the third normal form.

• The Structured Query Language (SQL) provides statements such as SELECT, INSERT, UPDATE,
and DELETE to work with relational data.

• A stored procedure is a set of SQL statements that is stored in a database. Stored proce-
dures can be used by multiple applications.

• The XmlReader and XmlWriter classes provide a fast, noncached, forward-only way to read
or write XML data. The XmlDocument class is an in-memory representation of XML data
and allows navigation and editing of the XML document.

• The DataSet class represents an in-memory representation of relational data. The
DataAdapter class acts as a bridge between the data source and the DataSet. The
DataAdapter stores the data connection and data commands needed to connect to
the data source.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. In order for a table to be in the _______________, none of the columns should have
multiple values in the same row of data.

 2. The _______________ requires that all non-key columns are functionally dependent on
the entire primary key.

 3. The _______________requires that there is no functional dependency among non-key
attributes.

 4. The basic building blocks for an entity-relationship diagram are _______________,
_______________, and _______________.

 5. The _______________ clause in a SELECT statement evaluates each row for a
condition and decides whether to include it in the result set.

 6. The object used with the using statement must implement the _______________
interface.

 7. T-SQL’s _______________ statement can be used to create a stored procedure.

■ Knowledge Assessment

c06Understanding Databases.indd Page 173 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

64 | Lesson 2

■ Competency Assessment

Scenario 2-1: Creating Properties

You need to create a class named Product that represents a product. The class has a single
property named Name. Users of the Product class should be able to get as well as set the value
of the Name property. However, any attempt to set the value of Name to an empty string or
a null value should raise an exception. Also, users of the Product class should not be able to
access any other data members of the Product class. How will you create such a class?

Scenario 2-2: Creating a Struct

You are developing a game that needs to represent the location of a target in three-dimensional
space. The location is identified by the three integer values denoted x, y, and z. You will create
thousands of these data structures in your program, and you need a lightweight, efficient way
to store this data in memory. Also, it is unlikely that you will need to inherit any other types
from this location type. How should you represent the location in your program?

■ Proficiency Assessment

Scenario 2-1: Overriding the ToString Method

Say you are writing code for a Product class. The Product class contains the name and price
of a product. You need to override the base class (System.Object) method ToString to provide
information about the objects of the product class to the calling code. What code do you
need to write for the Product class in order to meet this requirement?

Scenario 2-2: Creating and Handling Events

Imagine that you are writing code for creating and handling events in your program. The
class SampleClass needs to implement the following interface:

public delegate void SampleDelegate();

public interface ISampleEvents

{

 event SampleDelegate SampleEvent;

 void Invoke();

}

You need to write code for the SampleClass and for a test method that creates an instance of
the SampleClass and invokes the event. What code should you write?

c02Introductionto ObjectOriented64 Page 64 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 69

It is important to note that the process of software testing can only help find defects—it
cannot guarantee the absence of defects. Complex software has a huge number of possible
execution paths and many parameters that can affect its behavior. It is not feasible and
often not possible to test all the different situations that such software will encounter in a
production environment.

TAKE NOTE*

the core functionality of the system. For example, testing whether users can add items to
a shopping cart is an important part of functional testing for an e-commerce Web site. In
 comparison, nonfunctional testing involves testing software attributes that are not part of
the core functionality but rather part of the software’s nonfunctional requirements, such as
 scalability, usability, security.

Traditionally, there are two broad approaches to software testing:

• Black-box testing
• White-box testing

Black-box testing treats the software as a black box, focusing solely on inputs and outputs.
With this approach, any knowledge of internal system workings is not used during
testing. In contrast, with white-box testing, testers use their knowledge of system internals
when testing the system. For example, in white-box testing, the testers have access to the
source code.

These two testing techniques complement each other. Black-box testing is mostly used to
make sure a software application covers all its requirements. Meanwhile, white-box testing is
used to make sure that each method or function has proper test cases available.

Understanding Testing Methods

Software testing methods are generally divided into two categories: white-box and black-
box testing.

Understanding Testing Levels

Testing is performed at various phases of the application development lifecycle. Different
testing levels specify where in the lifecycle a particular test takes place, as well as what
kind of test is being performed.

Testing levels are defined by where the testing takes place within the course of the software
development lifecycle. Five distinct levels of testing exist:

• Unit testing: Unit testing verifies the functionality of a unit of code. For example, a unit
test may assess whether a method returns the correct value. Unit testing is white-box
testing, and it is frequently done by the developer who is writing the code. Unit testing
often uses an automated tool that can simplify the development of cases and also keep
track of whether a code modification causes any of the existing unit tests to fail. Visual
Studio has built-in support for unit testing. You can also use open-source tools such as
NUnit to automate unit tests for the .NET Framework code.

• Integration testing: Integration testing assesses the interface between software compo-
nents. Integration testing can be performed incrementally as the components are being

c03Understanding General Softwar69 Page 69 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05

Take Note

Reader Aid

Skill Summary

Knowledge

Assessment

Case Scenarios

FMTOC.indd Page ix 3/9/11 12:25 PM user-F392FMTOC.indd Page ix 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Conventions and Features
Used in This Book

This book uses particular fonts, symbols, and heading conventions to highlight important
information or to call your attention to special steps. For more information about the features
in each lesson, refer to the Illustrated Book Tour section.

x |

 CONVENTION MEANING

 This feature provides a brief summary of the material
to be covered in the section that follows.

 CERTIFICATION READY This feature signals the point in the text where a specific
certification objective is covered. It provides you with a
chance to check your understanding of that particular
MTA objective and, if necessary, review the section of
the lesson where it is covered.

 Reader Aids appear in shaded boxes found in your text. Take
Note provides helpful hints related to particular tasks or topics.

 These notes provide pointers to information discussed
elsewhere in the textbook or describe interesting features
that are not directly addressed in the current topic or
exercise.

 Alt + Tab A plus sign (+) between two key names means that you
must press both keys at the same time. Keys that you are
instructed to press in an exercise will appear in the font
shown here.

 Example Key terms appear in bold italic when they are defined.

TAKE NOTE**

THE BOTTOM LINE

XREF

FMTOC.indd Page x 3/9/11 12:25 PM user-F392FMTOC.indd Page x 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

The Microsoft Official Academic Course programs are accompanied by a rich array of resources
that incorporate the extensive textbook visuals to form a pedagogically cohesive package.
These resources provide all the materials instructors need to deploy and deliver their courses.
Resources available online for download include:

• The Instructor’s Guide contains solutions to all the textbook exercises and syllabi for vari-
ous term lengths. The Instructor’s Guide also includes chapter summaries and lecture notes.
The Instructor’s Guide is available from the Book Companion site (http://www.wiley.com/
college/microsoft).

• The Test Bank contains hundreds of questions in multiple-choice, true-false, short
answer, and essay formats, and is available to download from the Instructor’s Book
Companion site (www.wiley.com/college/microsoft). A complete answer key is provided.

• A complete set of PowerPoint presentations and images are available on the Instructor’s
Book Companion site (http://www.wiley.com/college/microsoft) to enhance classroom
presentations. Approximately 50 PowerPoint slides are provided for each lesson. Tailored
to the text’s topical coverage and Skills Matrix, these presentations are designed to con-
vey key concepts addressed in the text. All images from the text are on the Instructor’s
Book Companion site (http://www.wiley.com/college/microsoft). You can incorporate
them into your PowerPoint presentations, or create your own overhead transparencies
and handouts. By using these visuals in class discussions, you can help focus students’
attention on key elements of technologies covered and help them understand how to use
it effectively in the workplace.

• When it comes to improving the classroom experience, there is no better source of
ideas and inspiration than your fellow colleagues. The Wiley Faculty Network con-
nects teachers with technology, facilitates the exchange of best practices, and helps to
enhance instructional efficiency and effectiveness. Faculty Network activities include
technology training and tutorials, virtual seminars, peer-to-peer exchanges of experi-
ences and ideas, personal consulting, and sharing of resources. For details visit
www.WhereFacultyConnect.com.

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only) | xi

Instructor Support Program

FMTOC.indd Page xi 3/9/11 12:25 PM user-F392FMTOC.indd Page xi 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

xii | Instructor Support Program

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

■ Important Web Addresses and Phone Numbers
To locate the Wiley Higher Education Rep in your area, go to http://www.wiley.com/
college and click on the “Who’s My Rep?” link at the top of the page, or call the MOAC
Toll-Free Number: 1 + (888) 764-7001 (U.S. & Canada only).

To learn more about becoming a Microsoft Certified Technology Specialist and exam
availability, visit www.microsoft.com/learning/mcp/mcp.

FMTOC.indd Page xii 3/9/11 12:25 PM user-F392FMTOC.indd Page xii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

■ Additional Resources

Book Companion Web Site (www.wiley.com/college/microsoft)

The students’ book companion Web site for the MOAC series includes any resources, exercise
files, and Web links that will be used in conjunction with this course.

Wiley Desktop Editions

Wiley MOAC Desktop Editions are innovative, electronic versions of printed textbooks.
Students buy the desktop version for up to 50% off the U.S. price of the printed text, and
they get the added value of permanence and portability. Wiley Desktop Editions provide stu-
dents with numerous additional benefits that are not available with other e-text solutions.

Wiley Desktop Editions are NOT subscriptions; students download the Wiley Desktop
Edition to their computer desktops. Students own the content they buy to keep for as long as
they want. Once a Wiley Desktop Edition is downloaded to the computer desktop, students
have instant access to all of the content without being online. Students can print the sections
they prefer to read in hard copy. Students also have access to fully integrated resources within
their Wiley Desktop Edition. From highlighting their e-text to taking and sharing notes,
students can easily personalize their Wiley Desktop Edition as they are reading or following
along in class.

■ About the Microsoft Technology Associate (MTA)
Certification

Preparing Tomorrow's Technology Workforce

Technology plays a role in virtually every business around the world. Possessing the fun-
damental knowledge of how technology works and understanding its impact on today’s
academic and workplace environment is increasingly important—particularly for students
interested in exploring professions involving technology. That’s why Microsoft created the
Microsoft Technology Associate (MTA) certification—a new entry-level credential that
validates fundamental technology knowledge among students seeking to build a career in
technology.

The Microsoft Technology Associate (MTA) certification is the ideal and preferred path to
Microsoft’s world-renowned technology certification programs, such as Microsoft Certified
Technology Specialist (MCTS) and Microsoft Certified IT Professional (MCITP). MTA is
positioned to become the premier credential for individuals seeking to explore and pursue a
career in technology, or augment related pursuits such as business or any other field where
technology is pervasive.

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Student Support Program

| xiii

FMTOC.indd Page xiii 3/9/11 12:25 PM user-F392FMTOC.indd Page xiii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

xiv | Student Support Program

MTA Candidate Profile

The MTA certification program is designed specifically for secondary and post-secondary
students interested in exploring academic and career options in a technology field. It offers
students a certification in basic IT and development. As the new recommended entry point
for Microsoft technology certifications, MTA is designed especially for students new to IT
and software development. It is available exclusively in educational settings and easily inte-
grates into the curricula of existing computer classes.

MTA Empowers Educators and Motivates Students

MTA provides a new standard for measuring and validating fundamental technology knowl-
edge right in the classroom while keeping your budget and teaching resources intact. MTA
helps institutions stand out as innovative providers of high-demand industry credentials and
is easily deployed with a simple, convenient, and affordable suite of entry-level technology
certification exams. MTA enables students to explore career paths in technology without
requiring a big investment of time and resources, while providing a career foundation and the
confidence to succeed in advanced studies and future vocational endeavors.

In addition to giving students an entry-level Microsoft certification, MTA is designed to be a
stepping stone to other, more advanced Microsoft technology certifications, like the Microsoft
Certified Technology Specialist (MCTS) certification.

Delivering MTA Exams: The MTA Campus License

Implementing a new certification program in your classroom has never been so easy with the MTA
Campus License. Through the one-time purchase of the 12-month, 1,000-exam MTA Campus
License, there’s no more need for ad hoc budget requests and recurrent purchases of exam vouch-
ers. Now you can budget for one low cost for the entire year, and then administer MTA exams to
your students and other faculty across your entire campus where and when you want.

The MTA Campus License provides a convenient and affordable suite of entry-level technol-
ogy certifications designed to empower educators and motivate students as they build a foun-
dation for their careers.

The MTA Campus License is administered by Certiport, Microsoft’s exclusive MTA exam
provider.

To learn more about becoming a Microsoft Technology Associate and exam availability, visit
www.microsoft.com/learning/mta.

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

FMTOC.indd Page xiv 3/9/11 12:25 PM user-F392FMTOC.indd Page xiv 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Student Support Program | xv

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

FMTOC.indd Page xv 3/9/11 12:25 PM user-F392FMTOC.indd Page xv 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

This page intentionally left blank

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

■ MOAC MTA Technology Fundamentals Reviewers

We'd like to thank the many reviewers who pored over the manuscript and provided invaluable feedback in the service of
quality instructional materials:

Acknowledgments

Yuke Wang, University of Texas at Dallas
Palaniappan Vairavan, Bellevue College
Harold “Buz” Lamson, ITT Technical Institute
Colin Archibald, Valencia Community College
Catherine Bradfield, DeVry University Online
Robert Nelson, Blinn College
Kalpana Viswanathan, Bellevue College
Bob Becker, Vatterott College
Carol Torkko, Bellevue College
Bharat Kandel, Missouri Tech
Linda Cohen, Forsyth Technical Community College
Candice Lambert, Metro Technology Centers
Susan Mahon, Collin College
Mark Aruda, Hillsborough Community College
Claude Russo, Brevard Community College

David Koppy, Baker College
Sharon Moran, Hillsborough Community College
Keith Hoell, Briarcliffe College and Queens College—
CUNY
Mark Hufnagel, Lee County School District
Rachelle Hall, Glendale Community College
Scott Elliott, Christie Digital Systems, Inc.
Gralan Gilliam, Kaplan
Steve Strom, Butler Community College
John Crowley, Bucks County Community College
Margaret Leary, Northern Virginia Community College
Sue Miner, Lehigh Carbon Community College
Gary Rollinson, Cabrillo College
Al Kelly, University of Advancing Technology
Katherine James, Seneca College

xvi |

FMTOC.indd Page xvi 3/9/11 12:25 PM user-F392FMTOC.indd Page xvi 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

 1 Introduction to Programming 1

 2 Introduction to Object-Oriented Programming 32

 3 Understanding General Software Development 65

 4 Understanding Web Applications 85

 5 Understanding Desktop Applications 120

 6 Understanding Databases 142

Appendix A 177

Index 179

Brief Contents

| xvii
www.wiley.com/college/microsoft or

call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

FMTOC.indd Page xvii 3/9/11 12:25 PM user-F392FMTOC.indd Page xvii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

FMTOC.indd Page xviii 3/9/11 12:25 PM user-F392FMTOC.indd Page xviii 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Contents

| xix
www.wiley.com/college/microsoft or

call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Lesson 1: Introduction to
Programming 1

Objective Domain Matrix 1
Key Terms 1
Understanding Computer Programming 2

Introducing Algorithms 2
Introducing C# 4

Understanding Decision Structures 11
The If Statement 11
The If-Else Statement 13
The Switch Statement 15

Understanding Repetition Structures 17
Understanding the While Loop 17
Understanding the Do-While Loop 19
Understanding the For Loop 20
Understanding the Foreach Loop 21
Understanding Recursion 22

Understanding Exception Handling 23
Handling Exceptions 24
Using Try-Catch-Finally 25

Skill Summary 26
Knowledge Assessment 27
Competency Assessment 30
Proficiency Assessment 31

Lesson 2: Introduction to
Object-Oriented
Programming 32

Objective Domain Matrix 32
Key Terms 32
Understanding Objects 33

Thinking in an Object-Oriented Way 33
Understanding Classes 33

Understanding Values and References 44
Understanding Structs 44
Understanding Memory Allocation 45

Understanding Encapsulation 47
Understanding Access Modifiers 48

Understanding Inheritance 48
Understanding Abstract and Sealed Classes 50
Inheriting from the Object Class 51
Casting between Types 52

Understanding Polymorphism 53
Understanding the Override and New Keywords 55

Understanding Interfaces 56
Skill Summary 58
Knowledge Assessment 59
Competency Assessment 64
Proficiency Assessment 64

Lesson 3: Understanding General
Software Development 65

Objective Domain Matrix 65
Key Terms 65
Understanding Application Lifecycle

Management 66
Understanding Requirements Analysis 66
Understanding the Design Process 67
Understanding Software Development 67
Understanding Software Testing 68
Understanding Release Management 68

Understanding Testing 68
Understanding Testing Methods 69
Understanding Testing Levels 69

Understanding Data Structures 70
Understanding Arrays 70
Understanding Queues 72
Understanding Stacks 73
Linked Lists 74

Understanding Sorting Algorithms 76
Understanding BubbleSort 76
Understanding QuickSort 79

Skill Summary 81
Knowledge Assessment 81
Competency Assessment 83
Proficiency Assessment 84

FMTOC.indd Page xix 3/9/11 12:25 PM user-F392FMTOC.indd Page xix 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

xx | Contents

www.wiley.com/college/microsoft or
call the MOAC Toll-Free Number: 1+(888) 764-7001 (U.S. & Canada only)

Understanding Multiple Document Interface (MDI)
Applications 126

Understanding Console-Based Applications 129
Working with Command-Line Parameters 130

Understanding Windows Services 131
Creating a Windows Service 132

Skill Summary 137
Knowledge Assessment 138
Competency Assessment 140
Proficiency Assessment 141

Lesson 6: Understanding
Databases 142

Objective Domain Matrix 142
Key Terms 142
Understanding Relational Database Concepts 142

Understanding Databases 143
Understanding Relational Database Concepts 143
Understanding Relational Database Design 144
Understanding Entity-Relationship Diagrams 144
Understanding Data Normalization 146

Understanding Database Query Methods 149
Working with SQL Queries 150
Working with Stored Procedures 159

Understanding Database Connection
Methods 164
Working with Flat Files 164
Working with XML 167
Working with DataSet 170

Skill Summary 173
Knowledge Assessment 173
Competency Assessment 176
Proficiency Assessment 176

Appendix A 177

Index 179

Lesson 4: Understanding Web
Applications 85

Objective Domain Matrix 85
Key Terms 85
Understanding Web Page Development 85

Understanding HTML 86
Understanding Cascading Style Sheets 88
Understanding JavaScript 92
Understanding Client-Side vs. Server-Side Programming 94

Understanding ASP.NET Application
Development 95
Understanding ASP.NET Page Life Cycle and Event

Model 96
Understanding State Management 99

Understanding IIS Web Hosting 104
Understanding Internet Information Services 105
Creating Virtual Directories and Web Sites 105
Deploying Web Applications 106

Understanding Web Services Development 107
Introducing SOAP 107
Introducing WSDL 108
Creating Web Services 108
Consuming Web Services 112

Skill Summary 115
Knowledge Assessment 115
Competency Assessment 118
Proficiency Assessment 119

Lesson 5: Understanding Desktop
Applications 120

Objective Domain Matrix 120
Key Terms 120
Understanding Windows Forms Applications 120

Designing a Windows Form 121
Understanding the Windows Form Event Model 123
Using Visual Inheritance 123

FMTOC.indd Page xx 3/9/11 12:25 PM user-F392FMTOC.indd Page xx 3/9/11 12:25 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Introduction
to Programming

LESSON 1

1

Imagine that you are a software developer for the Northwind Corporation. As part of
your job, you develop computer programs to solve business problems. Examples of
the work you do include analyzing customer orders to determine applicable discounts,
updating stock information for thousands of items in a company’s inventory, and writing
interactive reports that allow users to sort and filter data.

It is important for you to make sure your programs are designed exactly according to
specifications. You also need to ensure that all computations are accurate and complete.
The programs that you write need to be robust, and they should be able to display error
messages but continue processing.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Computer Understand computer storage 1.1
Programming and data types.

Understanding Decision Structures Understand computer decision 1.2
 structures.

Understanding Repetition Structures Identify the appropriate method 1.3
 for handling repetition.

Understanding Exception Handling Understand error handling. 1.4

K E Y T E R M S

algorithm

array

binary code

binary number system

case

class

computer
 programs (programs)

constant

data types

decision structures

decision table

default statement

do-while loop

exception

finally block

flowchart

for loop

foreach loop

high-level language

if statement

if-else statement

methods

operator

recursion

switch block

switch statement

try-catch-finally block

variable

while loop

c01IntroductiontoProgramming.ind1 Page 1 2/25/11 1:55:29 PM f-392c01IntroductiontoProgramming.ind1 Page 1 2/25/11 1:55:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

2 | Lesson 1

The programming language that you use provides you with various tools and techniques
to get your tasks done. Based on the task at hand, you select the data types and the
 control structures that are best suited for solving the problem.

The term algorithm refers to a method for solving problems. Algorithms can be described in
English, but such descriptions are often misinterpreted because of the inherent complexity
and ambiguity in a natural language. Hence, algorithms are frequently written in simple and
more precise formats, such as flowcharts, decision trees, and decision tables, which represent
an algorithm as a diagram, table, or graph. These techniques are often employed prior to
 writing programs in order to gain a better understanding of the solution.

These algorithm-development tools might help you in expressing a solution in an easy-to-use
way, but they can’t be directly understood by a computer. In order for a computer to under-
stand your algorithm, you’ll need to write a computer program in a more formal way by using
a programming language like C#. You’ll learn about that in the next section.

In the meantime, this section of the lesson focuses on two techniques for presenting your
algorithms—namely, flowcharts and decision tables—that are more precise than a natural
 language but less formal and easier to use than a computer language.

INTRODUCING FLOWCHARTS
A flowchart is a graphical representation of an algorithm. A flowchart is usually drawn using
standard symbols. Some common flowchart symbols are shown in Table 1-1.

■ Understanding Computer Programming

A computer program is a set of precise instructions to complete a task. In this section,
you’ll learn how to write algorithms and computer programs to solve a given problem. In
addition to writing your first computer program using the C# programming language,
you’ll also learn about the basic structure of computer programs and how to compile,
execute, provide input to, and generate output from a program.

THE BOTTOM LINE

Introducing Algorithms

An algorithm is a set of ordered and finite steps to solve a given problem.

Flowchart Symbol Description

Start or end of an algorithm

A process or computational operation

Input or output operation

Decision-making operation

Specifies the flow of control

Table 1-1

Common flowchart symbols

c01IntroductiontoProgramming.ind2 Page 2 2/25/11 1:55:29 PM f-392c01IntroductiontoProgramming.ind2 Page 2 2/25/11 1:55:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

As you can see, this flowchart lists in the correct order all the necessary steps to perform the
operation. The flow of control starts with the start symbol and ends at the stop symbol. The
process and input/output operation symbols always have a single entry and a single exit. In
contrast, the decision symbol has a single entry but multiple exits. You can test a flowchart by
performing a “dry run.” In a dry run, you manually trace through the steps of the flowchart
with test data to check whether the correct paths are being followed.

INTRODUCING DECISION TABLES
When an algorithm involves a large number of conditions, decision tables are a more com-
pact and readable format for presenting the algorithm. Table 1-2 presents a decision table for
calculating a discount. This table generates a discount percentage depending on the quantity
of product purchased. The bold lines in the decision table divide the table in four quadrants.
The first quadrant (top left) specifies the conditions (“Quantity � 10,” etc.). The second
quadrant (top right) specifies the rules. The rules are the possible combinations of the out-
come of each condition. The third quadrant (bottom left) specifies the action (“Discount,”
in this case), and the last quadrant (bottom right) specifies the action items corresponding to
each rule.

Introduction to Programming | 3

Figure 1-1

A simple flowchart that com-
pares two numbers and out-
puts the larger of the two

No

Yes

Input y

Output y

Input x

Output x

x > y?

START

STOP

For example, Figure 1-1 shows a flowchart that inputs two numbers, compares them, and
then outputs the larger number.

c01IntroductiontoProgramming.ind3 Page 3 2/25/11 1:55:29 PM f-392c01IntroductiontoProgramming.ind3 Page 3 2/25/11 1:55:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

4 | Lesson 1

As discussed in the previous section, computers need precise and complete instructions to
accomplish a task. These sets of instructions are called computer programs, or just programs
for short.

At the most basic level, computers use the binary number system to represent information
and code. In this system, each value is represented using only two symbols, 0 and 1.
A computer program written using the binary number system is called binary code.

Using binary code to program a computer is terse and extremely difficult to accomplish for
any non trivial task. Thus, to simplify programming, scientists and computer engineers have
built several levels of abstractions between computers and their human operators. These
abstractions include software (such as operating systems, compilers, and various runtime
systems) that takes responsibility for translating a human-readable program into a machine-
 readable program.

Most modern programs are written in a high-level language such as C#, Visual Basic, or Java.
These languages allow you to write precise instructions in a human-readable form. A language
compiler then translates the high-level language into a lower-level language that can be under-
stood by the runtime execution system.

Each programming language provides its own set of vocabulary and grammar (also known as
syntax). In this course, you’ll learn how to program by using the C# programming language
on the .NET Framework. The .NET Framework provides a runtime execution environment
for the C# program. The Framework also contains class libraries that provide a lot of reusable
core functionality that you can use directly in your C# program.

Table 1-2

A decision table for calculating
discounts

Quantity < 10 Y N N N

Quantity < 50 Y Y N N

Quantity < 100 Y Y Y N

Discount 5% 10% 15% 20%

To find out which action item to apply, you must evaluate each condition to find the match-
ing rule and then choose the action specified in the column with the matching rule. For
example, if the value of “Quantity” in the test data is 75, then the first rule evaluates to “No,”
the second rule evaluates to “No,” and the third rule evaluates to “Yes.” Therefore, you will
pick the action item from the column (N, N, and Y), which sets the discount at 15%.

Introducing C#

C# is a popular high-level programming language that allows you to write computer
programs in a human-readable format. C# is a part of the .NET Framework and benefits
from the runtime support and class libraries provided by the .Framework.

✚ MORE INFORMATION
The .NET Framework provides three major components: a runtime execution environment, a set of class libraries that
provide a great deal of reusable functionality, and language compilers for C#, Visual Basic, and Managed C��. The
.NET Framework supports multiple programming languages and also has support for adding additional languages to
the system. Although the syntax and vocabulary of each language may differ, each can still use the base class libraries
provided by the Framework.

c01IntroductiontoProgramming.ind4 Page 4 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind4 Page 4 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 5

In this course, you will be using an integrated development environment (IDE) to develop
your code. You can use either Visual Studio or the free Visual Studio Express edition to
write your code. Either of these tools provides you with a highly productive environment for
 developing and testing your programs.

WRITE A C# PROGRAM

GET READY. To write a C# program, perform these steps:

 1. Start Visual Studio. Select File >New Project. Select the Visual C# Console

Application templates.

 2. Type IntroducingCS in the Name box. Make sure that the Create directory for solution
checkbox is checked, and enter the name Lesson01 in the Solution name box. Click
OK to create the project.

 3. When the project is created, you’ll note that Visual Studio has already created a file
named Program.cs and written a template for you.

 4. Modify the template to resemble the following code:

using System;
namespace Lesson01
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine(“hello, world!”);
 }
 }
}

 5. Select Debug > Start Without Debugging, or press Ctrl�F5.

 6. You will see the output of the program in a command Window, as shown in Figure 1-2.

Figure 1-2

Program output in a command
window

 7. Press a key to close the command Window.

PAUSE. Leave the project open to use in the next exercise.

C# is a case-sensitive
programming language.
As a result, typing
“Class” instead of “class”
(for example) will result
in a syntax error.

TAKE NOTE*

You can also execute the program by opening a command Window (cmd.exe) and then
navigating to the project’s output folder, which by default is the bin\debug subfolder
under the project’s location. Start the program by typing the name of the program in the
command window and pressing Enter.

ANOTHER WAY

c01IntroductiontoProgramming.ind5 Page 5 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind5 Page 5 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

6 | Lesson 1

Figure 1-3 depicts the program you created in the previous exercise with line numbers.
Throughout this section, these numbers will be used to refer to different structures in the
program.

When you select the Debug > Start Without Debugging menu option, Visual Studio
automatically displays the prompt “Press any key to continue . . .” The command window
then stays open for you to review the output. If, however, you select the Debug > Start
Debugging option, the command window closes as soon as program execution completes.
It is important to know that the Start Debugging option provides debugging capabilities
such as the ability to pause a running program at a given point and review the value of
various variables in memory.

TAKE NOTE*

The program you just created is trivial in what it does, but it is nonetheless useful for
 understanding program structure, build, and execution. Let’s first talk about the build and
execution part. Here is what happens when you select the Debug > Start Without
Debugging option in step 5 above:

 1. Visual Studio invokes the C# compiler to translate the C# code into a lower-level lan-
guage, Common Intermediate Language (CIL) code. This low-level code is stored in an
executable file named (Lesson01.exe). The name of the output file can be changed by
modifying a project’s properties.

 2. Next, Visual Studio takes the project output and requests that the operating system
execute it. This is when you see the command window displaying the output.

 3. When the program finishes, Visual Studio displays the following message: “Press any key
to continue . . .”. Note that this message is only generated when you run the program
using the Start Without Debugging option.

Before Common Intermediate Language (CIL) code can be executed, it must first be
translated for the architecture of the machine on which it will run. The .NET Framework’s
runtime execution system takes care of this translation behind the scenes using a process
called just-in-time compilation.

TAKE NOTE*

If you don’t use an Integrated Development Environment (IDE) like Visual Studio, you can
still compile your program manually using the command-line tools. Visual Studio, of course,
makes it easier and quicker to test your programs.

To enable the display of line numbers in Visual Studio, select the Tools > Options menu.
Next, expand the Text Editor node and select C#. Finally, in the Display section, check the
Line Numbers option.

TAKE NOTE*

UNDERSTANDING THE STRUCTURE OF A C# PROGRAM

In this section of the lesson, you’ll learn about the structural elements of the simple C#
program you created in the previous section.

c01IntroductiontoProgramming.ind6 Page 6 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind6 Page 6 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 7

A C# program is made of one or more classes. A class is a set of data and methods. For exam-
ple, the code in Figure 1-3 defines a single class named Program on lines 5 through 11. A
class is defined by using the keyword class followed by the class name. The contents of a class
are defined between an opening brace ({) and a closing brace (}).

Line 3 of the code in Figure 1-3 defines a namespace, Lesson01. Namespaces are used to
organize classes and uniquely identify them. The namespace and the class names are com-
bined together to create a fully qualified class name. For example, the fully qualified class
name for the class Program is Lesson01.Program. C# requires that the fully qualified name
of a class be unique. As a result, you can’t have another class by the name Program in the
namespace Lesson01, but you can have a class by the name Program in another namespace,
say, Lesson02. Here, the class Program defined in the namespace Lesson02 is uniquely identi-
fied by its fully qualified class name, Lesson02.Program.

The .NET Framework provides a large number of useful classes organized into many
namespaces. The System namespace contains some of the most commonly used base classes.
One such class in the System namespace is Console. The Console class provides functionality
for console application input and output. The line 9 of the code in Figure 1-3 refers to the
Console class and calls its WriteLine method. To access the WriteLine method in an unam-
biguous way, you must write it like this:

System.Console.WriteLine(“hello, world!”);

Because class names frequently appear in the code, writing the fully qualified class name every
time will be tedious and make the program verbose. You can solve this problem by using the
C# using directive (see the code in line 1 in Figure 1-3). The using directive allows you to use
the classes in a namespace without having to fully qualify the class name.

The Program class defines a single method by the name Main (see lines 7 to 10 of the code
listing in Figure 1-3). Main is a special method in that it also serves as an entry point to the
program. When the runtime executes a program, it always starts at the Main method. A

Figure 1-3

Program listing with line
 numbers

XREF

You can find more
information on classes
in Lesson 2.

XREF

You can find more
information on methods
in Lesson 2.

Every C# statement must
end with a semicolon (;).

TAKE NOTE*

c01IntroductiontoProgramming.ind7 Page 7 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind7 Page 7 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

8 | Lesson 1

The variables in C# are placeholders used to store values. A variable has a name and a data
type. A variable’s data type determines what values it can contain and what kind of opera-
tions may be performed on it. For example, the following declaration creates a variable named
number of the data type int and assigns a value of 10 to the variable:

int number = 10;

When a variable is declared, a location big enough to hold the value for its data type is
 created in the computer memory. For example, on a 32-bit machine, a variable of data type
int will need two bytes of memory. The value of a variable can be modified by another
 assignment, such as:

number = 20;

The above code changes the contents of the memory location identified by the name number.

 program can have many classes and each class can have many methods, but it should have
only one Main method. A method can in turn call other methods. In line 9, the Main meth-
od is calling the WriteLine method of the System.Console class to display a string of charac-
ters on the command window—and that’s how the message is displayed.

The Main method must be declared as static. A static method is callable on a class even
when no instance of the class has been created. You will learn more about this in the
following lesson.

TAKE NOTE*

A variable name must begin with a letter or an underscore and can contain only letters,
numbers, or underscores. A variable name must not exceed 255 characters. A variable must
also be unique within the scope in which it is defined.

TAKE NOTE*

Constants are declared by using the const keyword. For example, a constant can be declared
as follows:

const int i = 10;

This declares a constant i of data type int and stores a value of 10. Once declared, the value
of the constant cannot be changed.

UNDERSTANDING VARIABLES

Variables provide temporary storage during the execution of a program.

UNDERSTANDING CONSTANTS

Constants are data fields or local variables whose value cannot be modified.

UNDERSTANDING DATA TYPES

Data types specify the type of data that you work with in a program. The data type
defines the size of memory needed to store the data and the kinds of operations that can
be performed on the data.

c01IntroductiontoProgramming.ind8 Page 8 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind8 Page 8 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 9

C# provides several built-in data types that you can use in your programs. You can also define
new types by defining a data structure, such as a class or a struct. This chapter focuses on
some of the most commonly used built-in data types.

Table 1-3 lists several commonly used built-in data types available in C#. The sizes listed in
the table refer to a computer running a 32-bits operating system such as Windows 7, 32-bit.
For a 64-bits operating system, such as Windows 7 64-bit, these sizes will be different.

XREF

You can find more
information about how
to create your own data
types in Lesson 2.

Table 1-3

Commonly used built-in data
types in C#

DATA TYPE SIZE RANGE OF VALUES

byte 1 byte 0 to 255

char 2 bytes U�0000 to U�ffff (Unicode characters)

short 2 bytes �32,768 to 32,767

int 4 bytes �2,147,483,648 to 2,147,483,647

long 8 bytes �9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807

float 4 bytes �1.5 � 10-45 to �3.4 � 1038

double 8 bytes �5.0e�324 to �1.7e308

bool 2 bytes True or false

string - Zero or more Unicode characters

All the data types listed in Table 1-3 are value types except for string, which is a reference
type. The variables that are based directly on the value types contain the value. In the case
of the reference type, the variable holds the address of the memory location where the actual
data is stored. You will learn more about the differences between value types and reference
types in Lesson 2.

The unsigned versions
of short, int, and long
are ushort, uint, and
ulong, respectively. The
unsigned types have the
same size as their signed
versions but store much
larger ranges of only
positive values.

TAKE NOTE*

An array in C# is commonly used to represent a collection of items of similar type. A sample
array declaration is shown in the following code:

int[] numbers = { 1, 2, 3, 4, 5 };

This declaration creates an array identified by the name numbers. This array is capable of
storing a collection of five integers. This declaration also initializes each of the array items
respectively by the numbers 1 through 5.

Any array item can be directly accessed by using an index. In the .NET Framework, array
indexes are zero-based. This means that to access the first element of an array, you use the
index 1; to access the second element, you use the index 2, and so on.

To access an individual array element, you use the name of the array followed by the index
enclosed in square brackets. For example, numbers[0] will return the value 1 from the above-
declared array, and numbers[4] will return the value 5. It is illegal to access an array outside

UNDERSTANDING ARRAYS

An array is a collection of items in which each item can be accessed by using a unique
index.

c01IntroductiontoProgramming.ind9 Page 9 2/25/11 1:55:30 PM f-392c01IntroductiontoProgramming.ind9 Page 9 2/25/11 1:55:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

10 | Lesson 1

its defined boundaries. For example, you’ll get an error if you try to access the array element
numbers[5].XREF

The topic of arrays
is covered in more
detail in Lesson 3,
Understanding General
Software Development.

Examples of operators include �, -, *, /, and so on, and operands can be variables, constants,
literals, etc. Depending on how many operands are involved, there are three kinds of operators:

• Unary operators: The unary operators work with only one operand. Examples include
��x, x��, or isEven, where x is of integer data type and isEven is of Boolean data type.

• Binary operators: The binary operators take two operands. Examples include x � y or x � y.

• Ternary operators: Ternary operators take three operands. There is just one ternary
 operator, ?:, in C#.

Often, expressions involve more than one operator. In this case, the compiler needs to deter-
mine which operator takes precedence over the other(s). Table 1-4 lists the C# operators in
order of precedence. The higher an operator is located in the table, the higher its precedence.
Operators with higher precedence are evaluated before operators with lower precedence.
Operators that appear in the same row have equal precedence.

Table 1-4

Operator precedence in C# CATEGORY OPERATORS

Primary x.y f(x) a[x] x�� x �� new
 typeof checked unchecked

Unary � - ! ~ ��x �� x (T)x

Multiplicative * / %

Additive � -

Shift << >>

Relational and type testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ternary ?:

Assignment = *= /= %= �= -= <<= >>= &= ^= |=

The unary increment operator (��) adds 1 to the value of an identifier. Similarly, the
 decrement (��) operator subtracts 1 from the value of an identifier. The unary increment
and decrement can be used either as prefixes or suffixes. For example:

UNDERSTANDING OPERATORS

Operators are symbols that specify which operation to perform on the operands before
returning a result.

c01IntroductiontoProgramming.ind10 Page 10 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind10 Page 10 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 11

int x = 10;

x��; //value of x is now 11

��x; //value of x is now 12

However, the way the unary increment and decrement operators work when used as part of
an assignment can affect the results. In particular, when the unary increment and decrement
operators are used as prefixes, the current value of the identifier is returned prior to the incre-
ment or decrement. On the other hand, when used as a suffix, the value of the identifier is
returned after the increment or decrement is complete. To understand what this means,
consider the following code sample:

int y = x��; // the value of y is 12

int z = ��x; // the value of z is 14

Here, in the first statement, the value of x is returned prior to the increment. As a result,
after the statement is executed, the value of y is 12 and the value of x is 13. In contrast, in the
second statement, the value of x is incremented prior to returning its value for assignment.
As a result, after the statement is executed, the value of both x and z is 14.

In the previous code listing, you learned about the Main method. Methods are where the
action is in a program. More precisely, a method is a set of statements that are executed when
the method is called.

The Main method doesn’t return a value back to the calling code. This is indicated by using
the void keyword. If a method were to return a value, the appropriate data type for the return
value would be used instead of void.

Class members can have modifiers such as static, public, and private. These modifiers specify
how and where class members can be accessed. You’ll learn more about these modifiers in
Lesson 2.

CERTIFICATION READY
Do you understand
the core elements of
programming, such as
variables, data types,
operators, and methods?
1.1

■ Understanding Decision Structures

Decision structures introduce decision-making ability into a program. They enable you
to branch to different sections of the code depending on the truth value of a Boolean
expression.

THE BOTTOM LINE

The decision-making control structures in C# are the if, if-else, and switch statements. The
following sections discuss each of these statements in more detail.

The If Statement

The if statement will execute a given sequence of statements only if the corresponding
Boolean expression evaluates to true.

UNDERSTANDING METHODS

Methods are code blocks containing a series of statements. Methods can receive input via
arguments and can return a value to the caller.

c01IntroductiontoProgramming.ind11 Page 11 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind11 Page 11 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

12 | Lesson 1

Here, the output statement will be executed only if the Boolean expression in the paren-
theses is true. If the expression is false, control passes to the next statement following the if
 statement.

Sometimes in your programs, you will want a sequence of statements to be executed only if a
certain condition is true. In C#, you can do this by using the if statement. Take the following
steps to create a program that uses an if statement.

USE THE IF STATEMENT

GET READY. To use the if statement, perform the following tasks:

 1. Add a new Console Application project (named if_Statement) to the Lesson01
 solution.

 2. Add the following code to the Main method of the Program.cs class:

 int number1 = 10;

 int number2 = 20;

 if (number2 > number1)

 {

 Console.WriteLine(“number2 is greater than number1”);

 }

 3. Select Debug > Start Without Debugging, or press Ctrl�F5.

 4. You will see the output of the program in a command window.

 5. Press a key to close the command window.

PAUSE. Leave the project open to use in the next exercise.

This code is functionally equivalent to the flowchart shown in Figure 1-4.

Figure 1-4

The flowchart equivalent of the
example if statement

No

Yes

n2 = 20

n1 = 10

Output
"n2 is > n1"

n2 > n1?

START

STOP

c01IntroductiontoProgramming.ind12 Page 12 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind12 Page 12 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 13

In C# code, the parentheses surrounding the condition are required. However, the braces
are optional if there is only one statement in the code block. So, the above if statement is
 equivalent to the following:

if (number2 > number1)

 Console.WriteLine(“number2 is greater than number1”);

In contrast, look at this example:

if (number2 > number1)

 Console.WriteLine(“number2 is greater than number1”);

Console.WriteLine(number2);

Here, only the first Console.WriteLine statement is part of the if statement. The second
Console.WriteLine statement is always executed regardless of the value of the Boolean
 expression.

For clarity, it is always a good idea to enclose the statement that needs to be conditionally
executed in braces.

If statements can also be nested within other if statements, as in the following example:

int number1 = 10;

if (number1 > 5)

{

 Console.WriteLine(“number1 is greater than 5”);

 if (number1 < 20)

 {

 Console.WriteLine(“number1 is less than 20”);

 }

}

Because both the conditions evaluate to true, this code would generate the following output:

number1 is greater than 5

number1 is less than 20

But what would happen if the value of number1 was 25 instead of 10 prior to the execution
of the outer if statement? In this case, the first Boolean expression will evaluate to true, but the
second Boolean expression will evaluate to false and the following output will be generated:

number1 is greater than 5

The if-else Statement

The if-else statement allows your program to perform one action if the Boolean expres-
sion evaluates to true and a different action if the Boolean expression evaluates to false.

Take the following steps to create an example program that uses the if-else statement.

USE THE IF-ELSE STATEMENT

GET READY. To use the if-else statement, do the following:

 1. Add a new Console Application project (named ifelse_Statement) to the Lesson01
solution.

c01IntroductiontoProgramming.ind13 Page 13 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind13 Page 13 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

14 | Lesson 1

 2. Add the following code to the Main method of the Program.cs class:

 TestIfElse(10);

 3. Next, add the following method to the Program.cs class:

 public static void TestIfElse(int n)

 {

 if (n < 10)

 {

 Console.WriteLine(“n is less than 10”);

 }

 else if (n < 20)

 {

 Console.WriteLine(“n is less than 20”);

 }

 else if (n < 30)

 {

 Console.WriteLine(“n is less than 30”);

 }

 else

 {

 Console.WriteLine(“n is greater than or equal to 30”);

 }

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

 7. Modify the Main method’s code to call the TestIfElse method with different values.
Notice how a different branch of the if-else statement is executed as a result of your
changes.

PAUSE. Leave the project open to use in the next exercise.

Here, the code in the TestIfElse method combines several if-else statements to test for
 multiple conditions. For example, if the value of n is 25, then the first two conditions
(n � 10 and n � 20) will evaluate to false, but the third condition (n < 30) will evaluate
to true. As a result, the method will print the following output:

n is less than 30

This C# program is equivalent to the flowchart shown in Figure 1-5.

c01IntroductiontoProgramming.ind14 Page 14 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind14 Page 14 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 15

The switch statement consists of the keyword switch, followed by an expression in parentheses,
followed by a switch block. The switch block can include one or more case statements or a
default statement. When the switch statement executes, depending on the value of the switch
expression, control is transferred to a matching case statement. If the expression does not
match any of the case statements, then control is transferred to the default statement. The
switch expression must be surrounded by parentheses.

Take the following steps to create a program that uses the switch statement to evaluate simple
expressions.

USE THE SWITCH STATEMENT

GET READY. To use the switch statement, do the following:

 1. Add a new Console Application project named switch_Statement to the Lesson01
solution.

 2. Add the following code to the Main method of the Program.cs class:

 TestSwitch(10, 20, ’�’);

Figure 1-5

The flowchart equivalent of the
example if-else statement

Yes

No

No

No

Output
"n = > 30"

Output
"n < 30"

n < 30?

Yes Output
"n < 20"

n < 20?

Yes Output
"n < 10"

n < 10?

START

STOP

The expression follow-
ing the case statement
must be a constant
expression and must
be of the matching
data type to the switch
expression.

TAKE NOTE*

The Switch Statement

The switch statement allows multi-way branching. In many cases, using a switch state-
ment can simplify a complex combination of if-else statements.

c01IntroductiontoProgramming.ind15 Page 15 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind15 Page 15 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

16 | Lesson 1

 3. Add the following method to the Program.cs class:

 public static void TestSwitch(int op1, int op2, char opr)

 {

 int result;

 switch (opr)

 {

 case ’�’:

 result = op1 � op2;

 break;

 case ’�’:

 result = op1 � op2;

 break;

 case ’*’:

 result = op1 * op2;

 break;

 case ’/ ’:

 result = op1 / op2;

 break;

 default:

 Console.WriteLine(“Unknown Operator”);

 return;

 }

 Console.WriteLine(“Result: {0}”, result);

 return;

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

 7. Modify the Main method’s code to call the TestSwitch method with different values.
Notice how a different branch of the switch statement is executed as a result of your
changes.

PAUSE. Leave the project open to use in the next exercise.

Here, the TestSwitch method accepts two operands (op1 and op2) and an operator (opr) and
evaluates the resulting expression. The value of the switch expression is compared to the case
statements in the switch block. If there is a match, the statements following the matching case
are executed. If none of the case statements match, then control is transferred to the optional
default branch.

Note that there is a break statement after each case. The break statement terminates the
switch statement and transfers control to the next statement outside the switch block. Using
a break ensures that only one branch is executed and helps avoid programming mistakes. In
fact, if you specify code after the case statement, you must include break (or another control-
transfer statement, such as return) to make sure that control does not fall through from one
case label to another.

The Console.Write and
the Console.WriteLine
methods can use format
strings such as “Results:
{0}” to format the out-
put. Here, the string {0}
stands for the first argu-
ment provided after the
format string. In the
TestSwitch method, the
format string “{0}” is
replaced by the value of
the following argument,
result.

TAKE NOTE*

c01IntroductiontoProgramming.ind16 Page 16 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind16 Page 16 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 17

However, if no code is specified after the case statement, it is okay for control to fall through
to the subsequent case statement. The following code demonstrates how this might be useful:

public static void TestSwitchFallThrough()

{

 DateTime dt = DateTime.Today;

 switch (dt.DayOfWeek)

 {

 case DayOfWeek.Monday:

 case DayOfWeek.Tuesday:

 case DayOfWeek.Wednesday:

 case DayOfWeek.Thursday:

 case DayOfWeek.Friday:

 Console.WriteLine(“Today is a weekday”);

 break;

 default:

 Console.WriteLine(“Today is a weekend day”);

 break;

 }

}

Here, if the value of expression dt.DayofWeek is DayOfWeek.Monday, then the first case is
matched, but because no code (or a control-transfer statement) is specified, the execution will
fall through the next statement, resulting in display of the message “Today is a weekday” on
the command window.

You can decide whether to use if-else statements or a switch statement based on the nature
of the comparison and readability of the code. For example, the code of the TestIfElse
method makes decisions based on conditions that are more suited for use with if-else state-
ments. In the TestSwitch method, the decisions are based on constant values, so the code is
much more readable when written as a switch statement.

TAKE NOTE*

CERTIFICATION READY
Do you understand
computer decision
structures, such as
branching and repetition?
1.2

■ Understanding Repetition Structures

C# has four different control structures that allow programs to perform repetitive tasks: the
while loop, the do-while loop, the for loop, and the foreach loop.THE BOTTOM LINE

These repetition control statements can be used to execute the statements in the loop body a
number of times, depending on the loop termination criterion.

A loop can also be terminated by using one of several control transfer statements that transfer
control outside the loop. These statements are break, goto, return, or throw. Finally, the continue
statement can be used to pass control to next iteration of the loop without exiting the loop.

Understanding the While Loop

The while loop repeatedly executes a block of statements until a specified Boolean
expression evaluates to false.

c01IntroductiontoProgramming.ind17 Page 17 2/25/11 1:55:31 PM f-392c01IntroductiontoProgramming.ind17 Page 17 2/25/11 1:55:31 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

18 | Lesson 1

The general form of the while loop is as follows:

while (boolean test)

 statement

Here, a Boolean test is performed at the beginning of the loop. If the test evaluates to
true, the loop body is executed and the test is performed again. If the test evaluates to
false, the loop terminates and control is transferred to the next statement following the
loop.

Because the Boolean test is performed before the execution of the loop, it is possible that
the body of a while loop is never executed. This happens if the test evaluates to false the first
time.

Take the following steps to create a program that uses the while loop.

USE THE WHILE LOOP

GET READY. To use the while loop, perform the following tasks:

 1. Add a new Console Application project named while_Statement to the Lesson01
 solution.

 2. Add the following code to the Main method of the Program.cs class:

 WhileTest();

 3. Add the following method to the Program.cs class:

 private static void WhileTest()
 {
 int i = 1;
 while (i <= 5)
 {
 Console.WriteLine(“The value of i = {0}”, i);
 i��;
 }
 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

PAUSE. Leave the project open to use in the next exercise.

In this exercise, the variable i is assigned the value 1. Next, the condition in the while loop is
evaluated. Because the condition is true (1 <= 5), the code within the while statement block
is executed. The value of i is written in the command window, and then the value of i is
increased by 1 so that it becomes 2. Control then passes back to the while statement, and the
condition is evaluated again. Because the condition is still true (2 <= 5), the statement block
is executed yet again. The loop continues until the value of i becomes 6 and the condition
in the while loop becomes false (6 <= 5). The above method, when executed, generates the
 following output:

The value of i = 1

The value of i = 2

The value of i = 3

The value of i = 4

The value of i = 5

The flowchart equivalent of this while loop is shown in Figure 1-6.

With the while loop,
the Boolean test must
be placed inside paren-
theses. If more than one
statement needs to be
executed as part of the
while loop, they must be
placed together inside
curly braces.

TAKE NOTE*

c01IntroductiontoProgramming.ind18 Page 18 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind18 Page 18 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 19

The statement in the loop, which increments the value of i, plays a critical role. If you miss
this statement, the termination condition will never be achieved, and as a result, you will have
a never-ending loop.

In most cases, to have a well-designed while loop, you must have three parts:

 1. Initializer: The initializer sets the loop counter to the correct starting value. In the above
example, the variable i is set to 1 before the loop begins.

 2. Loop test: The loop test specifies the termination condition for the loop. In the above
example, the expression (i <= 5) is the condition expression.

 3. Termination expression: The termination expression changes the value of the loop
counter in such a way that the termination condition in achieved. In the above example,
the expression i�� is the termination expression.

Figure 1-6

The flowchart equivalent of the
example while loop

No

Yes

Output i

i = i + 1

i = 1

i < = 5?

START

STOP

To avoid an infinite
loop, you must make
sure that your while
loop is designed in such
a way that it leads to
termination.

TAKE NOTE*

Understanding the Do-While Loop

The do-while loop repeatedly executes a block of statements until a specified Boolean
expression evaluates to false. The do-while loop tests the condition at the bottom of the
loop.

The do-while loop is similar to the while loop but, unlike the while loop, the body of the
 do-while loop must be executed at least once.

The general form of the do-while loop is as follows:

do

 statement

while (boolean test);

Take the following steps to create a program that uses the do-while loop.

With the do-while loop,
the Boolean test must
be placed inside paren-
theses. If more than one
statement needs to be
executed as part of a do-
while loop, these state-
ments must be placed
together inside curly
braces.

TAKE NOTE*

c01IntroductiontoProgramming.ind19 Page 19 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind19 Page 19 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

20 | Lesson 1

USE THE DO-WHILE LOOP

GET READY. To use the do-while loop, do the following tasks:

 1. Add a new Console Application project named dowhile_Statement to the Lesson01
solution.

 2. Add the following code to the Main method of the Program.cs class:

 DoWhileTest();

 3. Add the following method to the Program.cs class:

 private static void DoWhileTest()

 {

 int i = 1;

 do

 {

 Console.WriteLine(“The value of i = {0}”, i);

 i��;

 }

 while (i <= 5);

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You’ll see the output of the program in a command window.

 6. Press a key to close the command window.

PAUSE. Leave the project open to use in the next exercise.

In this exercise, after the variable i is assigned the value 1, the control directly enters the loop.
At this point, the code within the do-while statement block is executed. Specifically, the value
of i is written in the command window and the value of i is increased by 1 so that it becomes 2.
Next, the condition for the do-while loop is evaluated. Because the condition is still true
(2 <= 5), control passes back to the do-while statement, and the statement block is executed
again. The loop continues until the value of i becomes 6 and the condition of the do-while
loop becomes false (6 <= 5). The above method, when executed, generates the same output as
the WhileTest method.

The choice between a while loop and a do-while loop depends on whether you want the loop
to execute at least once. If you want the loop to execute zero or more times, choose the while
loop. In contrast, if you want the loop to execute one or more times, choose the do-while
loop.

Understanding the For Loop

The for loop combines the three elements of iteration—the initialization expression, the
termination condition expression, and the counting expression—into a more readable
code.

The for loop is similar to the while loop; it allows a statement or a statement block to be
executed repeatedly until an expression evaluates to false. The general form of the for loop is
as follows:

for (init-expr; cond-expr; count-expr)

 statement

With the for loop, the
three control expressions
must be placed inside
parentheses. If more
than one statement
needs to be executed as
part of the loop, these
statements must be
placed together inside
curly braces.

TAKE NOTE*

c01IntroductiontoProgramming.ind20 Page 20 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind20 Page 20 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 21

As you can see, the for loop combines the three essential control expressions of an iteration.
This results in more readable code. The for loop is especially useful for creating iterations that
must execute a specified number of times.

Take the following steps to create a program that uses the for loop.

USE THE FOR LOOP

GET READY. To use the for loop, perform the following tasks:

 1. Add a new Console Application project named for_Statement to the Lesson01
 solution.

 2. Add the following code to the Main method of the Program.cs class:

 ForTest();

 3. Add the following method to the Program.cs class:

 private static void ForTest()

 {

 for(int i = 1; i<= 5; i��)

 {

 Console.WriteLine(“The value of i = {0}”, i);

 }

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

PAUSE. Leave the project open to use in the next exercise.

The ForTest method, when executed, generates the same output as the WhileTest method.
Here, the variable i is created within the scope of the for loop and its value is assigned to 1.
The loop continues as long as the value of i is less than or equal to 5. After the loop body, the
count-expr is evaluated and the control goes back to the cond-expr.

All the control expressions of a for loop are optional. For example, you can omit all the
expressions to create an infinite loop like this:

for (; ;)

{

 //do nothing

}

Understanding the Foreach Loop

The foreach loop is useful for iterating through the elements of a collection.

The foreach loop can be thought of as enhanced version of the for loop for iterating through
collections such as arrays and lists. The general form of the foreach statement is as follows:

foreach (ElementType element in collection)

 statement

c01IntroductiontoProgramming.ind21 Page 21 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind21 Page 21 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

22 | Lesson 1

The control expressions for the foreach loop must be placed inside parentheses. If more than
one statement needs to be executed as part of the loop, these statements must be placed
together inside curly braces.

Take the following steps to create a program that shows how the foreach loop provides a
simple way to iterate through a collection.

USE THE FOREACH LOOP

GET READY. To use the foreach loop, do the following:

 1. Add a new Console Application project named foreach_Statement to the Lesson01
solution.

 2. Add the following code to the Main method of the Program.cs class:

 ForEachTest();

 3. Add the following method to the Program.cs class:

 private static void ForEachTest()

 {

 int[] numbers = { 1, 2, 3, 4, 5 };

 foreach (int i in numbers)

 {

 Console.WriteLine(“The value of i = {0}”, i);

 }

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

PAUSE. Leave the project open to use in the next exercise.

In this exercise, the loop sequentially iterates through every element of the collection,
 numbers it, and displays it in the command window. This method generates the same
output as the ForTest method.

Understanding Recursion

Recursion is a programming technique that causes a method to call itself in order to
compute a result.

Recursion and iteration are related. You can write a method that generates the same results
with either recursion or iteration. Usually, the nature of the problem itself will help you
choose between an iterative or a recursive solution. For example, a recursive solution is more
elegant when you can define the solution of a problem in terms of a smaller version of the
same problem.

To better understand this concept, take the example of the factorial operation from math-
ematics. The general recursive definition for n factorial (written n!) is as follows:

n! �
1 if n � 0,

 (n � 1)! � n if n � 0.

According to this definition, if the number is 0, the factorial is one. If the number is larger
than zero, the factorial is the number multiplied by the factorial of the next smaller number.

�

c01IntroductiontoProgramming.ind22 Page 22 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind22 Page 22 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 23

For example, you can break down 3! like this: 3! � 3 * 2! —> 3 * 2 * 1! —> 3 * 2 * 1 * 0! —>
3 * 2 * 1 * 1 —> 6.

Take the following steps to create a program that presents a recursive solution to a factorial
problem.

USE THE RECURSIVE METHOD

GET READY. To use the recursive method, perform the following actions:

 1. Add a new Console Application project named RecursiveFactorial to the Lesson01 solution.

 2. Add the following code to the Main method of the Program.cs class:

 Factorial(5);

 3. Add the following method to the Program.cs class:

 public static int Factorial(int n)

 {

 if (n == 0)

 {

 return 1; //base case

 }

 else

 {

 return n * Factorial(n - 1); //recursive case

 }

 }

 4. Select Debug > Start Without Debugging, or press Ctrl�F5.

 5. You will see the output of the program in a command window.

 6. Press a key to close the command window.

 7. Modify the Main method to pass a different value to the Factorial method, and note
the results.

PAUSE. Leave the project open to use in the next exercise.

As seen in the above exercise, a recursive solution has two distinct parts:

• Base case: This is the part that specifies the terminating condition and doesn’t call
the method again. The base case in the Factorial method is n == 0. If you don’t have
a base case in your recursive algorithm, you create an infinite recursion. An infinite
recursion will cause your computer to run out of memory and throw a System.
StackOverflowException exception.

• Recursive case: This is the part that moves the algorithm toward the base case. The
recursive case in the Factorial method is the else part, where you call the method again
but with a smaller value progressing toward the base case.

CERTIFICATION READY
Can you identify the
appropriate methods for
handling repetition?
1.3

■ Understanding Exception Handling

The .NET Framework supports standard exception handling to raise and handle runtime
errors. In this section, you’ll learn how to use the try, catch, and finally keywords to handle
exceptions.

THE BOTTOM LINE

c01IntroductiontoProgramming.ind23 Page 23 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind23 Page 23 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

24 | Lesson 1

An exception is an error condition that occurs during the execution of a C# program. When
this happens, the runtime creates an object to represent the error and “throws” it. Unless you
“catch” the exception by writing proper exception-handling code, program execution will
 terminate.

For example, if you attempt to divide an integer by zero, a DivideByZeroException
 exception will be thrown. In the .NET Framework, an exception is represented by using
an object of the System.Exception class or one of its derived classes. There are predefined
exception classes that represent many commonly occurring error situations, such as the
DivideByZeroException mentioned earlier. If you are designing an application that needs to
throw any application-specific exceptions, you should create a custom exception class that
derives from the System.Exception class.

Handling Exceptions

To handle exceptions, place the code that throws the exceptions inside a try block and
place the code that handles the exceptions inside a catch block.

The following exercise shows how to use a try-catch block to handle an exception. The exer-
cise uses the File.OpenText method to open a disk file. This statement will execute just fine
in the normal case, but if the file (or permission to read the file) is missing, then an exception
will be thrown.

HANDLE EXCEPTIONS

GET READY. To handle exceptions, perform the following steps:

 1. Add a new Console Application project named HandlingExceptions to the Lesson01
solution.

 2. Add the following code to the Main method of the Program.cs class:

 ExceptionTest();

 3. Add the following method to the Program.cs class:

 private static void ExceptionTest()

 {

 StreamReader sr = null;

 try

 {

 sr = File.OpenText(@”c:\data.txt”);

 Console.WriteLine(sr.ReadToEnd());

 }

 catch (FileNotFoundException fnfe)

 {

 Console.WriteLine(fnfe.Message);

 }

 catch(Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 }

c01IntroductiontoProgramming.ind24 Page 24 2/25/11 1:55:32 PM f-392c01IntroductiontoProgramming.ind24 Page 24 2/25/11 1:55:32 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 25

 4. Create a text file (“data.txt”) using Notepad or Visual Studio on the C: drive. It is
acceptable to create the file at a different location, but if you do so, remember to
modify the file location in the program. Enter some text in the file.

 5. Select Debug > Start Without Debugging, or press Ctrl�F5.

 6. You will see the contents of the text file displayed in a command window.

 7. Press a key to close the command window.

 8. Delete the data.txt file and run the program again. This time, you’ll get a
FileNotFoundException exception, and an appropriate message will be displayed
in the output window.

PAUSE. Leave the project open to use in the next exercise.

The StreamReader class
is part of the System.IO
namespace. When run-
ning this code, you’ll
need to add a using
directive for the System.
IO namespace.

TAKE NOTE*

In the ExceptionTest method, it is incorrect to change the order of the two catch blocks.
The more specific exceptions need to be listed before the generic exceptions, or else you’ll
get compilation errors.

TAKE NOTE*

To handle an exception, you enclose the statements that could cause the exception in a try
block, then you add catch blocks to handle one or more exceptions. In this example, in
 addition to handling the more specific FileNotFoundException exception, we are also using a
catch block with more generic exceptions to catch all other exceptions. The exception name
for a catch block must be enclosed within parentheses. The statements that are executed when
an exception is caught must be enclosed within curly braces.

Code execution stops when an exception occurs. The runtime searches for a catch statement
that matches the type of exception. If the first catch block doesn’t catch the raised excep-
tion, control moves to the next catch block, and so on. If the exception is not handled in the
method, the runtime checks for the catch statement in the calling code and continues for the
rest of the call stack.

A try block must have at
least a catch block or a
finally block associated
with it.

TAKE NOTE*

Using Try-Catch-Finally

The finally block is used in association with the try block. The finally block is always
executed regardless of whether an exception is thrown. The finally block is often used to
write clean-up code.

When an exception occurs, it often means that some lines of code after the exception were
not executed. This may leave your program in a dirty or unstable state. To prevent such
 situations, you can use the finally statement to guarantee that certain cleanup code is always
executed. This may involve closing connections, releasing resources, or setting variables to
their expected values. Let’s look at a finally block in the following exercise.

USE TRY-CATCH-FINALLY

GET READY. To use the try-catch-finally statement, perform the following steps:

 1. Add a new Console Application project named trycatchfi nally to the Lesson01 solution.

 2. Add the following code to the Main method of the Program.cs class:

 TryCatchFinallyTest();

c01IntroductiontoProgramming.ind25 Page 25 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind25 Page 25 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

26 | Lesson 1

 3. Add the following method to the Program.cs class:

 private static void TryCatchFinallyTest()
 {
 StreamReader sr = null;
 try
 {
 sr = File.OpenText(“data.txt”);
 Console.WriteLine(sr.ReadToEnd());
 }
 catch (FileNotFoundException fnfe)
 {
 Console.WriteLine(fnfe.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 finally
 {
 if (sr != null)
 {
 sr.Close();
 }
 }
 }

 4. Create a text file (“data.txt”) using Notepad or Visual Studio on the C: drive. It is
acceptable to create the file at a different location, but if you do so, remember to
modify the file location in the program. Enter some text in the file.

 5. Select Debug > Start Without Debugging, or press Ctrl�F5.
 6. You will see the contents of the text file displayed in a command window.
 7. Press a key to close the command window.
 8. Delete the data.txt file and run the program again. This time, you’ll get a

FileNotFoundException exception, and an appropriate message will be displayed
in the output window.

In this exercise, the program makes sure that the StreamReader object is closed and any
resources are released when the operation completes. The code in the finally block is executed
regardless of whether an exception is thrown.

CERTIFICATION READY
Do you understand how
to handle errors in your
programs?
1.4

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• An algorithm is a set of ordered and finite steps to solve a given problem. You may find
it useful to express an algorithm as a flowchart or a decision table before you develop a
 formal computer program.

• The C# programming language is a part of the .NET Framework and benefits from the
 runtime support and class libraries provided by the .NET Framework.

• Main is a special method because it also serves as an entry point to a program. When the
runtime executes a program, it always starts at the Main method.

• Variables in C# are placeholders used to store values. A variable has a name and a data
type. A variable’s data type determines what value it can contain and what kind of
 operations may be performed on it.

c01IntroductiontoProgramming.ind26 Page 26 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind26 Page 26 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 27

• Operators are symbols, such as �, -, *, and /, that specify which operation to perform on
one or more operands before returning a result.

• If-else statements allow a program to perform one action if the Boolean expression
evaluates to true and a different action if the Boolean expression evaluates to false.

• The switch statement allows multi-way branching. In many cases, using a switch statement
can simplify a complex combination of if-else statements.

• C# has four different control structures that allow programs to perform repetitive tasks:
the while loop, the do-while loop, the for loop, and the foreach loop.

• The while and do-while loops repeatedly execute a block of statements until a specified
Boolean expression evaluates to false. The do-while loop tests the condition at the bottom
of the loop.

• The for loop combines the three elements of iteration—the initialization statement, the
 termination condition, and the increment/decrement statement—into more readable code.

• The foreach loop is useful for iterating through the elements of a collection.

• Recursion is a programming technique that causes a method to call itself in order to
 compute a result.

• The .NET Framework supports standard exception handling to raise and handle runtime
errors. To handle exceptions, place the code that throws exceptions inside a try block, and
place the code that handles the exceptions inside a catch block.

• The finally block is used in association with the try block. The finally block is always
 executed regardless of whether an exception is thrown. The finally block is often used to
write clean-up code.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. The statement selects for execution a statement list having an associated label
that corresponds to the value of an expression.

 2. The loop tests the condition at the bottom of the loop instead of at the top.

 3. The only operator that takes three arguments is the operator.

 4. The loop is the most compact way to iterate through the items in a collection.

 5. On a 32-bit computer, a variable of int data type takes bytes of memory.

 6. To access the first element of an array, you use an index of .

 7. is a programming technique that causes a method to call itself in order to
 compute a result.

 8. are data fields or local variables whose value cannot be modified.

 9. When an algorithm involves a large number of conditions, a(n) is a compact
and readable format for presenting the algorithm.

 10. A(n) is a graphical representation of an algorithm.

■ Knowledge Assessment

c01IntroductiontoProgramming.ind27 Page 27 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind27 Page 27 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

28 | Lesson 1

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. Write the following code snippet:

 int n = 20;
 int d = n�� � 5;

 What will be the value of d after this code snippet is executed?
a. 25
b. 26
c. 27
d. 28

 2. Write the following code snippet:

 private static void WhileTest()
 {
 int i = 1;
 while (i < 5)
 {
 Console.WriteLine(“The value of i = {0}”, i);
 i��;
 }
 }

 How many times will the while loop be executed in this code snippet?
a. 0
b. 1
c. 4
d. 5

 3. Write the following code snippet:

 int number1 = 10;
 int number2 = 20;
 if (number2 > number1)
 Console.WriteLine(“number1”);
 Console.WriteLine(“number2”);

 What output will be displayed after this code snippet is executed?
a. number1
b. number2
c. number1
 number2
d. number2
 number1

 4. In a switch statement, if none of the case statements match the switch expression, then
control is transferred to which statement?
a. break
b. continue
c. default
d. return

 5. You need to write code that closes a connection to a database, and you need to make
sure this code is always executed regardless of whether an exception is thrown. Where
should you write this code?
a. Within a try block
b. Within a catch block

c01IntroductiontoProgramming.ind28 Page 28 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind28 Page 28 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 29

c. Within a finally block
d. Within the Main method

 6. You need to store values ranging from 0 to 255. You also need to make sure that your
program minimizes memory use. Which data type should you use to store these values?
a. byte
b. char
c. short
d. int

 7. If you don’t have a base case in your recursive algorithm, you create an infinite recursion.
An infinite recursion will cause your program to throw an exception. Which exception
will your program throw in such a case?
a. OutOfMemoryException
b. StackOverflowException
c. DivideByZeroException
d. InvalidOperationException

 8. You are learning how to develop repetitive algorithms in C#. You write the following
method:

 private static void ForTest()

 {

 for(int i = 1; i < 5;)

 {

 Console.WriteLine(“The value of i = {0}”, i);

 }

 }

 How many repetitions will the for loop in this code perform?
a. 0
b. 4
c. 5
d. Infinite repetitions

 9. Which of the following C# features should you use to organize code and create globally
unique types?
a. Assembly
b. Namespace
c. Class
d. Data type

 10. You write the following code snippet:

 int[] numbers = {1, 2, 3, 4};

 int val = numbers[1];

 You also create a variable of the RectangleHandler type like this:

 RectangleHandler handler;

 What is the value of the variable val after this code snippet is executed?
a. 1
b. 2
c. 3
d. 4

c01IntroductiontoProgramming.ind29 Page 29 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind29 Page 29 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

30 | Lesson 1

Scenario 1-2: Converting a Flowchart into a C# Program

You are developing a library of mathematical functions. You first develop the following flow-
chart describing the algorithm for calculating the factorial of a number. You need to write an
equivalent C# program for this flowchart. How would you write such a program?

■ Competency Assessment

Scenario 1-1: Converting a Decision Table into a C# Program

You are developing an invoicing application that calculates discount percentages based on the
quantity of a product purchased. The logic for calculating discounts is listed in the following
decision table. If you need to write a C# method that uses the same logic to calculate the dis-
count, how would you write such a program?

No

Yes

Output fact

Input n

n = n – 1

fact = fact *n

fact = 1

n > 1?

START

STOP

Quantity < 10 Y N N N

Quantity < 50 Y Y N N

Quantity < 100 Y Y Y N

Discount 5% 10% 15% 20%

c01IntroductiontoProgramming.ind30 Page 30 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind30 Page 30 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Programming | 31

■ Proficiency Assessment

Scenario 1-3: Handling Exceptions

You are writing code for a simple arithmetic library. You decide to create a method named
Divide that takes two arguments, x and y, and returns the value of x/y. You need to catch
any arithmetic exceptions that might be thrown for errors in arithmetic, casting, or data type
conversions. You also need to catch any other exceptions that may be thrown from the code.
To address this requirement, you need to create properly structured exception-handling code.
How would you write such a program?

Scenario 1-4: Creating a Recursive Algorithm

You are developing a library of utility functions for your application. You need to write a
method that takes an integer and counts the number of significant digits in it. You need to
create a recursive program to solve this problem. How would you write such a program?

c01IntroductiontoProgramming.ind31 Page 31 2/25/11 1:55:33 PM f-392c01IntroductiontoProgramming.ind31 Page 31 2/25/11 1:55:33 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-
Oriented Programming

LESSON2

You are a software developer for the Northwind Corporation. You work as part of a team
to develop computer programs that solve complex business problems. Any programs
that you write must be easy to understand and maintain over a long period of time.
Therefore, you need to develop programs using techniques that encourage code reuse,
extensibility, and collaboration. Also, rather than thinking about your programs primarily
as lists of methods, you opt to model them on real-world business concepts, such as
customers, products, suppliers, and the interactions among them.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Objects Understand the fundamentals 2.1
 of classes.

Understanding Values and Understand computer storage and 1.1
References data types.

Understanding Encapsulation Understand encapsulation. 2.4

Understanding Inheritance Understand inheritance. 2.2

Understanding Polymorphism Understand polymorphism. 2.3

Understanding Interfaces Understand encapsulation. 2.4

32

K E Y T E R M S

access modifier

accessors

abstract classes

auto implemented properties

class

constructors

delegates

encapsulation

events

inheritance

interfaces

method

namespace

objects

polymorphism

properties

reference type

sealed classes

signature

static numbers

value type

c02Introductionto ObjectOriented32 Page 32 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented32 Page 32 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 33

Thinking in an Object-Oriented Way

Understanding Classes

A class is the template from which individual objects are created.

In the real world, objects need a template that defines how they should be built. All objects
created from the same template look and behave in a similar way. For example, think about a
particular make and model of car.

In the software world, a class is the template from which individual objects are created. An
object is also known as an instance of a class.

CREATE A CLASS

GET READY. Before you begin these steps, be sure to launch Microsoft Visual Studio and
open a new Console Application Project named Lesson02. Then, perform the following tasks:

 1. Add a new Visual C# class named Rectangle to the project.

 2. Replace the code for the Rectangle class with the following code:

 class Rectangle

 {

 private double length;

A software object is conceptually similar to a real-world object.

A great way to start thinking in an object-oriented way is to look at real-world objects, such
as cars, phones, music players, etc. You’ll notice that these objects all have state and behavior.
For example, cars have not only various states (e.g., model name, color, current speed, fuel
level), but also various behaviors (e.g., accelerate, brake, change gear). Similarly, you’ll notice
that some objects are simple, whereas others are complex. Most complex objects (such as a
car) are made up of smaller objects that in turn have their own state and behavior. You’ll also
notice that although a car is a complex object, you only need to know a few things in order to
interact with it. As you drive a car, for example, you simply invoke a behavior such as accel-
erate or brake; you are spared from knowing the many thousands of internal details at work
under the hood.

A software object is conceptually similar to a real-world object. Within the software environ-
ment, an object stores its state in fields and exposes its behavior through methods. When a
method is invoked on an object, you get a well-defined functionality without the need to
worry about the inner complexity of the object or the method itself. This concept of hiding
complexity is called encapsulation, and it is one of many features of objected-oriented
programming that you’ll learn more about in this lesson.

■ Understanding Objects

Object-oriented programming is a programming technique that makes use of objects.
Objects are self-contained data structures that consist of properties, methods, and events.
Properties specify the data represented by an object, methods specify an object’s behavior,
and events provide communication between objects.

THE BOTTOM LINE

c02Introductionto ObjectOriented33 Page 33 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented33 Page 33 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

34 | Lesson 2

 private double width;

 public Rectangle(double l, double w)

 {

 length = l;

 width = w;

 }

 public double GetArea()

 {

 return length * width;

 }

 }

 3. Select Build > Lesson02 to build the project. Ensure that there are no errors.

PAUSE. Leave the project open to use in the next exercise.

You have just created a new C# class named Rectangle. A new class is defined by using the
keyword class. Here, the Rectangle class has two data fields, length and width. These fields are
defined by using the access modifier private. An access modifier specifies what region of the
code will have access to a field. For example, the access modifier public will not limit access,
but the access modifier private will limit access within the class in which the field is defined.

This class also defines a method named GetArea. But what, exactly, is a method?

Each class is a definition
of a new data type.
Therefore, a class
definition is sometimes
also referred to as a type.

TAKE NOTE*

UNDERSTANDING METHODS

A method is a block of code containing a series of statements.

In the software world, a method defines the actions or operations supported by a class. A
method is defined by specifying the access level, the return type, the name of the method, and
an optional list of parameters in parentheses followed by a block of code enclosed in braces.
For instance, in the previous example, the class Rectangle defines a single method named
GetArea. For GetArea, the access level is public, the return type is double, the method name
is GetArea, the parameter list is empty, and the block of code is a single return statement.

A method can return a value to the calling code. If a method does not intend to return any
value, its return type is specified by the keyword void. The method must use a return state-
ment to return a value. The return statement terminates the execution of the method and
returns the specified value to the calling code. The data type of the value returned from a
method must match the return type specified on the method’s declaration line.

To return to the earlier example, the return type of the method GetArea is double, which
means that the GetArea method must return a value of the type double. The GetArea
method satisfies this requirement by returning the expression length * width, which is a
double value.

The following code defines an InitFields method that takes two parameters of type double
and returns void:

public void InitFields(double l, double w)

{

 length = l;

 width = w;

}

A method’s name, its
parameter list, and the
order of data types
of the parameters are
collectively recognized as
the method’s signature.
A method signature
must be unique within
a class.

TAKE NOTE*

c02Introductionto ObjectOriented34 Page 34 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented34 Page 34 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 35

Constructors are special class methods that are executed when a new instance of a class is
created. Constructors are used to initialize the data members of the object. Constructors
must have exactly the same name as the class, and they do not have a return type. Multiple
constructors, each with a unique signature, can be defined for a class.

A constructor that takes no arguments is called the default constructor. If a class is defined
without any constructor, an invisible default constructor that does absolutely nothing is
automatically generated.

It is often useful to have additional constructors to provide more ways through which an object
is initialized. The Rectangle class, defined earlier, is only one way to create and initialize its
object: by calling the constructor that accepts two parameters, both of the default data type.

UNDERSTANDING CONSTRUCTORS

Constructors are used to initialize the data members of the object.

The InitFields method takes two parameters and uses the parameter values to respectively
assign the data field length and width. When a method’s return type is void, a return statement
with no value can be used. If a return statement is not used, as in the InitFields method, the
method will stop executing when it reaches the end of the code block. The InitFields method
can be used to properly initialize the value of the data fields, but as you’ll learn in the following
section, constructors already give you a way of initializing a class.

CREATING OBJECTS

Objects are created from the templates defined by classes.

CREATE AN OBJECT

GET READY. For this activity, use the console application project (Lesson 02) that you created
in the previous exercise. Then, perform these steps:

 1. Modify the code of the Program class to the following:

 class Program

 {

 static void Main(string[] args)

 {

 Rectangle rect = new Rectangle(10.0, 20.0);

 double area = rect.GetArea();

 Console.WriteLine(“Area of Rectangle: {0}”,

 area);

 }

 }

 2. Select Debug > Start Without Debugging. A console window will pop up to display
the area of the rectangle.

 3. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

The class Rectangle provides only one way to construct an instance of the class: by calling a
constructor with two arguments of the double data type. Here, you create an object by using
the new keyword followed by the call to the appropriate class constructor.

c02Introductionto ObjectOriented35 Page 35 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented35 Page 35 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

36 | Lesson 2

When the code executes, an object of Rectangle type is created in the heap memory. A reference
to this memory is stored inside the variable rect, and the variable rect is stored on the stack. Later
in this block of code, you can use rect to refer to and manipulate the object that was just created.

Using the object’s reference, you can access the class members. For example, the code calls the
method GetArea on the object, and the value returned by the method is stored in the variable
area. The data fields, length and width, of the object rect are not accessible here because they
are marked as private in the class definition.

Classes and objects
are different. A class
defines the template
for an object but is not
an object itself. On the
other hand, an object is
a concrete instance of a
class but is not a class
itself.

TAKE NOTE*

UNDERSTANDING PROPERTIES

Properties allow you to access class data in a safe and flexible way.

Properties are class members that can be accessed like data fields but contain code like a
method. Properties are often used to expose the data fields of a class in a more controlled
manner. For example, a private field can be exposed by using a public property, but it is not
necessary to use properties in this way.

A property has two accessors, get and set. The get accessor is used to return the property
value, and the set accessor is used to assign a new value to the property. A property is often
defined as public and, by convention, always has a name that begins with a capital letter. In
contrast, the convention for naming private data fields is to begin with a lower-case letter.

CREATE PROPERTIES

USE the project you saved in the previous exercise. Then, complete the following tasks:

 1. Modify the code of class Rectangle as shown below. In this code, the constructor is
removed and two properties are inserted:

 class Rectangle
 {
 private double length;
 private double width;
 public double Length
 {
 get
 {
 return length;
 }
 set
 {
 if (value > 0.0)
 length = value;
 }
 }
 public double Width
 {
 get
 {
 return width;
 }

Properties are often
referred to as “smart”
fields because they can
include code for check-
ing data consistency or
validity.

TAKE NOTE*

c02Introductionto ObjectOriented36 Page 36 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented36 Page 36 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 37

 set
 {
 if (value > 0.0)
 width = value;
 }
 }
 public double GetArea()
 {
 return length * width;
 }
 }
 2. Next, modify the code of the Program class to the following:

 class Program
 {
 static void Main(string[] args)
 {
 Rectangle rect = new Rectangle();
 rect.Length = 10.0;
 rect.Width = 20.0;
 double area = rect.GetArea();
 Console.WriteLine(
 “Area of Rectangle: {0}”, area);
 }
 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
the area of the rectangle.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

In this exercise, you have modified the class Rectangle to introduce two properties, Length
and Width. Properties are often defined with a public access modifier. In the code for the
property Length, the get accessor simply returns the value of the data field length. However,
the set accessor checks for the value being assigned (using the value keyword) to the property
and modifies the data field length only if the value is positive. The private fields length and
width are also called backing fields for the properties that respectively expose them.

The class Rectangle also does not declare any explicit constructor. In this case, the users of the
class (the Main method) need to use the default constructor and rely on properties to initialize
the class data.

The Main method uses the properties Length and Width to set the data for the rect object.
Trying to set either Length or Width to a negative value will be ignored, and in this case, the
data fields will still have their original value of 0.

When defining properties, you can exclude either the get or the set accessor. If you don’t include
a set accessor, you don’t provide a way to set the value of the property, and as a result, you have a
read-only property. On the other hand, if you don’t include the get accessor, you don’t provide a
way to get the value of the property, and as a result, you have a write-only property.

The usual program-
ming pattern is that
all the data fields of a
class should be declared
private, and that access
to these private fields
should be via public
properties that check the
data values for validity.

TAKE NOTE*

UNDERSTANDING AUTO-IMPLEMENTED PROPERTIES

Auto-implemented properties simplify property declarations.

c02Introductionto ObjectOriented37 Page 37 2/25/11 2:03:27 PM f-392c02Introductionto ObjectOriented37 Page 37 2/25/11 2:03:27 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

38 | Lesson 2

C# introduced auto-implemented properties beginning with version 3 to simplify property
declaration when there is no additional logic specified in the get and set accessors. For example,
without the validation checks, the Length and Width properties are defined like this:

private double length;
private double width;

public double Length
{
 get
 {
 return length;
 }
 set
 {
 length = value;
 }
 }
 public double Width
 {
 get
 {
 return width;
 }
 set
 {
 width = value;
 }
 }

In comparison, with C# auto-implemented properties, the simplified syntax for property
declaration becomes:

public double Length { get; set; }

public double Width { get; set; }

In this case, the backing fields for the properties are defined behind the scenes and are not
directly accessible by the code.

The auto-implemented properties used with default constructors can also simplify the
creation and initialization of objects. For example, now an object can be created and
initialized as follows:

static void Main(string[] args)
{
 Rectangle rect = new Rectangle
 { Length = 10.0, Width = 20.0 };
 Console.WriteLine(
 “Area of Rectangle: {0}”, rect.GetArea());
}

USING THE THIS KEYWORD

The this keyword can be used to access members from within constructors, instance
methods, and accessors of instance properties.

c02Introductionto ObjectOriented38 Page 38 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented38 Page 38 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 39

The this keyword is a reference to the current instance of the class. You can use the this
keyword to refer to any member of the current object. For example, earlier in this chapter,
the Rectangle class was written as follows:

class Rectangle

{

 private double length;

 private double width;

 public Rectangle(double l, double w)

 {

 length = l;

 width = w;

 }

 public double GetArea()

 {

 return length * width;

 }

}

However, it could have been written like this:

class Rectangle
{
 private double length;
 private double width;

 public Rectangle(double l, double w)
 {
 this.length = l;
 this.width = w;
 }

 public double GetArea()
 {
 return this.length * this.width;
 }
}

As you can see, in the second example, the this keyword was used within the constructor and the
GetArea method to refer to the data fields of the current object of the Rectangle class. Although
it was not necessary to use the this keyword in this case, using it provides more flexibility in
naming the method parameters. For example, you could define the constructor as follows:

 public Rectangle(double length, double width)
 {
 // the parameter names length and width
 // shadow the class members length and
 // width in this scope
 this.length = length;
 this.width = width;
 }

Within the scope of the definition of the Rectangle constructor, the names length and width
will now refer to the parameter being passed. The names of the data fields have been shadowed
and can be only accessed by using the this keyword.

In C#, the characters //
are used to add single-
line comments to the
code. The text follow-
ing the // characters is
ignored by the compiler.
Multi-line comments
start with the characters /*
and end with the
characters */.

TAKE NOTE*

c02Introductionto ObjectOriented39 Page 39 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented39 Page 39 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

40 | Lesson 2

Delegates are special objects that can hold a reference to a method with a specific signature.
A delegate is defined by using the delegate keyword. For instance, you can define a delegate as
follows:

public delegate void RectangleHandler(Rectangle rect);

The delegate definition specifies the signature of the method whose reference can be held by a
delegate object. For example, in the above code, you define a RectangleHandler delegate that can
hold references to a method that returns void and accepts a single parameter of the Rectangle type.

So, if you have a method with a similar signature, it is an ideal candidate for assignment to a
delegate instance. For example:

public void DisplayArea(Rectangle rect)

{

 Console.WriteLine(rect.GetArea());

}

The delegate type can be used to declare a variable that can refer to any method with the
same signature as the delegate. For example, you can say:

RectangleHandler handler;

And you can then assign the method to the delegate using the following syntax:

handler �= new RectangleHandler(DisplayArea);

Alternatively, you can use the shortcut syntax shown below:

handler �= DisplayArea;

Notice that the syntax uses the addition operation. This means that you can associate more than
one method (of compatible signature), thereby creating an invocation list of one or more methods.

Finally, a call to a delegate can be made by a method-calling syntax, like this:

Rectangle rect = new Rectangle (10, 20);
handler(rect);

When the delegate is called in this way, it invokes all the methods in its invocation list. In this
specific example, the handler object refers to only one method DisplayArea, and therefore, the
DisplayArea method will be invoked with the rect object as a parameter.

Among many other applications, delegates form the basis for event declarations, as discussed
in the next section.

UNDERSTANDING DELEGATES

Delegates are special types that are used to encapsulate a method with a specific
 signature.

UNDERSTANDING EVENTS

Events are a way for a class to notify other classes or objects when something of interest
happens. The class that sends the notification is called a publisher of the event. The class
that receives the notification is called the subscriber of the event.

Events are easy to understand in the context of a graphical user interface (GUI). For example,
when a user clicks on a button, a Click event occurs. Multiple user interface elements can
subscribe to this event and change their visual state accordingly (for example, some controls

c02Introductionto ObjectOriented40 Page 40 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented40 Page 40 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 41

are enabled or disabled). In this type of event communication, the event publishers do not
need to know which objects subscribe to the events that are being raised.

Events are not just limited to GUI programming. In fact, events play an important role in
.NET Framework class libraries as a way for objects to signal any change in their state. You’ll
work with events in practically all programs.

When you define events, you generally need two pieces of information:

• A delegate that connects the event with its handler method(s)

• A class that contains the event data. This class is usually derived from the EventArgs class

To define an event, you can use a custom delegate. However, in most cases, if your event
holds no event-specific data, using the predefined delegate EventHandler is sufficient. The
EventHandler delegate is defined as follows:

public delegate void EventHandler(Object sender, EventArgs e);

Here, the sender parameter is a reference to the object that raises the event, and the e parameter
is a reference to an event data object that contains no event data.

The EventArgs class is used by events that do not pass any event-related information to an
event handler when an event is raised. If the event handler requires event-related information,
the application must derive a class from the EventArgs class to hold the event-related data.

PUBLISH AND SUBSCRIBE TO EVENTS

USE the project you saved in the previous exercise to carry out the following tasks:

 1. Modify the code of class Rectangle as shown below:

 class Rectangle
 {
 public event EventHandler Changed;
 private double length;
 public double Length
 {
 get
 {
 return length;
 }
 set
 {
 length = value;
 Changed(this, EventArgs.Empty);
 }
 }
 }

 2. Modify the code of the Program class to the following:

 class Program
 {
 static void Main(string[] args)
 {

 Rectangle r = new Rectangle();

The EventArgs.Empty
field represents an event
with no event data.
This field is equiva-
lent to having a read-
only instance of the
EventArgs class.

TAKE NOTE*

c02Introductionto ObjectOriented41 Page 41 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented41 Page 41 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

42 | Lesson 2

 r.Changed �= new EventHandler(r_Changed);

 r.Length = 10;

 }

 static void r_Changed(object sender, EventArgs e)

 {

 Rectangle r = (Rectangle)sender;

 Console.WriteLine(

 “Value Changed: Length = {0}”,

 r.Length);

 }

 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
that the value of the Length property is changed.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

In the example you just completed, the Rectangle class defines a Changed event that is
invoked when the Length property of the Rectangle object is changed. The delegate of the
Changed event is of EventHandler type. In the Rectangle class, the event Changed is invoked
when the set accessor of the Length property is called.

You subscribe to the Changed event inside the Main method by attaching the r_Changed
method as an event handler for the event by using the following code:

r.Changed �= new EventHandler(r_Changed);

The signature of the r_Changed method matches the requirements of the EventHandler
delegate. The r_Changed method is invoked as soon as you set the value of Length property
in the Main method.

The above code uses the �= operator rather than the simple assignment operator (=) to
attach the event handler. By using the �= operator, you make sure that this event handler
will be added to a list of event handlers already attached with the event. This technique allows
you have multiple event handlers that may respond to an event. If you use the assignment
operator (=) to assign the new event handler, it will override any existing event handler that is
attached to the event, and as a result, the newly attached event handler will be only one that
is fired when the event is invoked.

The code in the r_
Changed method uses a
cast operator to convert
an object data type to
the Rectangle data type.
Casting is explained
later in this lesson, in
the section entitled
“Casting Between
Types.”

TAKE NOTE*

UNDERSTANDING NAMESPACES

A namespace allows you to organize code and create unique class names.

A namespace is a language element that allows you to organize code and create globally
unique class names. Let’s say you create a class of the name Widget. Chances are that some
other company will also ship code that contains a class of the name Widget. In that case,
how do you handle the ambiguity in names? The solution is to organize the code within a
namespace. A common convention is to use the company name in the namespace. For exam-
ple, you could do the following:

namespace CompanyA
{

 public class Widget { … }

}

c02Introductionto ObjectOriented42 Page 42 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented42 Page 42 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 43

and

namespace CompanyB
{

 public class Widget { … }

}

Here, the class from the namespace CompanyA can be uniquely referred to by its fully
qualified class name CompanyA.Widget, whereas the other Widget can be uniquely identified
as CompanyB.Widget.

The .NET Framework uses namespaces liberally to organize all its classes. For example, the
System namespace groups all the fundamental classes. The System.Data namespace organizes
classes for data access. Similarly, the System.Web namespace is used for Web-related classes.

Of course, with the use of namespaces, you might end up getting really long fully qualified class
names that may result in verbose programs and a lot of typing. C# solves this inconvenience via
the using directive. You can use the using directive at the top of the class file like this:

using System.Text;

Once you have included the using directive for a namespace, you don’t need to fully qualify
classes from that namespace in the file.

UNDERSTANDING STATIC MEMBERS

Static members belong to a class itself rather than individual objects.

The class members discussed so far in this section (e.g., data fields, methods, and properties)
all operate on individual objects. Such members are called as instance members because they
can be used only after an instance of a class is created. In contrast, the static keyword is used
to declare members that do not belong to individual objects but to a class itself. Such class
members are called as static members. One common example of a static member is the familiar
Main method that serves as the entry point for your program.

CREATE STATIC MEMBERS

USE the project you saved in the previous exercise. Then, perform the following steps:

 1. Modify the code of class Rectangle as shown below:

 class Rectangle

 {

 public static string ShapeName

 {

 get { return “Rectangle”; }

 }

 public double Length { get; set; }

 public double Width { get; set; }

 public double GetArea()

 {

 return this.Length * this.Width;

 }

 }

c02Introductionto ObjectOriented43 Page 43 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented43 Page 43 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

44 | Lesson 2

 2. Modify the code of the Program class to the following:

 class Program
 {
 static void Main(string[] args)
 {
 Rectangle rect = new Rectangle
 { Length = 10.0, Width = 20.0 };
 Console.WriteLine(“Shape Name: {0}, Area: {1}”,
 Rectangle.ShapeName,
 rect.GetArea());
 }
 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
the name and area of the shape.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

When an instance of a class is created, a separate copy is created for each instance field, but
only one copy of a static field is shared by all instances.

A static member cannot be referenced through an instance object. Instead, a static member
is referenced through the class name (such as Rectangle.ShapeName in the above exercise).
Note that it is not possible to use the this keyword reference with a static method or property
because the this keyword can only be used to access instance objects.

CERTIFICATION READY
Do you understand the
fundamentals of classes?
2.1

A value type directly stores data within its memory. Reference types, on the other hand, store
only a reference to a memory location; here, the actual data is stored at the memory location being
referred to. Most built-in elementary data types (such as bool, int, char, double, etc.) are value types.
User-defined data types created by using the keyword struct are value types as well. Reference types
include the types created by using the keywords object, string, interface, delegate, and class.

Understanding Structs

The keyword struct is used to create user-defined types that consist of small groups of
related fields. Structs are value types—as opposed to classes, which are reference types.

Structs are defined by using the keyword struct, as shown below:

public struct Point
{
 public double X, Y;
}

Structs can contain most of the elements that classes can contain, such as constructors,
methods, properties, etc. However, as you’ll learn in the next section, structs are value types,

■ Understanding Values and References

A value type directly stores a value, whereas a reference type only stores a reference to an
actual value.THE BOTTOM LINE

c02Introductionto ObjectOriented44 Page 44 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented44 Page 44 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 45

whereas classes are reference types. Unlike a class, a struct cannot inherit from another class or
struct.

Structs are mostly used
to create simple types.
If you find yourself
creating a very com-
plex struct, you should
consider using a class
instead.

TAKE NOTE*

Understanding Memory Allocation

After you enter a value or text into a cell, you can modify it in a number of ways. In
particular, you can remove the contents completely, enter a different value to replace
what was there, or alter what you have entered.

A good way to understand how value types differ from reference types is to visualize how each
of them is represented in memory. Figure 2-1 shows how value types are created in memory.
When you create a variable of type int, for instance, a named memory location is created that
you can use to store a value of type int. Initially, when you don’t explicitly assign a value, the
default value of the data type (for int, the default value is 0) is stored in the memory location.
Then, when an assignment is made, the memory address identified by the variable name is
updated with the new value (10 in the case of the assignment in Figure 2-1).

Figure 2-1

Visualizing a value type in
memory

0

Code view

int number;

Memory view

number

10number = 10;

number

Now, take a look at Figure 2-2, which shows a reference type—specifically, the string data
type. When you create a variable of type string, a memory location is created that will be
identified by this name. However, this memory location will not contain the content of the
string. Rather, this variable will store the memory address (a reference) of the location where
the string is actually stored.

Figure 2-2

Visualizing a reference type in
memory

null

Code view

string name;

Memory view

name

m100

address data

m100 "Northwind"name = "Northwind";

name

Initially, when no value is assigned, the variable will have the value of null (a null reference; in
other words, this variable does not refer to a valid memory address). Then, in the next state-
ment, when you say:

name = “Northwind”;

the string “Northwind” is created at a particular memory location (to keep things simple, let’s
say the memory address is m100), and that memory address is stored in the variable name.
Later, when it is time to retrieve the value of the variable name, the runtime will know that

c02Introductionto ObjectOriented45 Page 45 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented45 Page 45 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

46 | Lesson 2

its contents are not stored in the variable itself, but rather at the memory location pointed to
by the variable.

COPY VALUE AND REFERENCE TYPES

USE the project you saved in the previous exercise to complete the steps below:

 1. Add the following code after the Rectangle class defi nition to create a Point struct:

 struct Point

 {

 public double X, Y;

 }

 2. Modify the code of the Main method as shown below:

 static void Main(string[] args)

 {

 Point p1 = new Point();

 p1.X = 10;

 p1.Y = 20;

 Point p2 = p1;

 p2.X = 100;

 Console.WriteLine(“p1.X = {0}”, p1.X);

 Rectangle rect1 = new Rectangle

 { Length = 10.0, Width = 20.0 };

 Rectangle rect2 = rect1;

 rect2.Length = 100.0;

 Console.WriteLine(“rect1.Length = {0}”,

 rect1.Length);

 }

 3. Select Debug > Start Without Debugging. A console window will pop up to display
the values for p1.X and rect1.Length.

 4. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

Here, the first part of the program creates a copy of the value type Point, and the second half
creates a copy of the reference type Rectangle.

Let’s start by analyzing how the copy of a value type is made. To begin, when the following
statement is executed, a new variable p2 is created in memory, and its contents are copied
from the variable p1:

Point p2 = p1;

After this statement is executed, the variable p2 is created, and the content of variable p1 is
copied to variable p2. Both p1 and p2 have their own set of values available in their respective
memory locations. So, when the following statement is executed:

p2.X = 100;

it only affects the value of X corresponding to the memory location of variable p2. The value
of X for variable p1 remains unaffected.

It is possible to create a
struct without using the
new operator. You can
simply say
Point p1;
to create a variable of
the struct type.

TAKE NOTE*

When you copy a refer-
ence type variable to
another variable of the
same type, only the ref-
erences are copied. As
a result, after the copy,
both variables will point
to the same object.

TAKE NOTE*

c02Introductionto ObjectOriented46 Page 46 2/25/11 2:03:28 PM f-392c02Introductionto ObjectOriented46 Page 46 2/25/11 2:03:28 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 47

Now, let’s analyze how the copy works between reference types. In this case, when the follow-
ing statement is executed, a new variable rect2 is created, and just as before, the contents of
rect1 are copied into the memory location of rect2:

Rectangle rect2 = rect1;

However, because the class Rectangle is a reference type, the content of variable rect1 is
actually a reference to a memory location that holds a Rectangle object. So, after the above
initialization, both rect1 and rect2 point to the same memory location and in turn the same
Rectangle object. In other words, there is only one rectangle object in memory, and both
rect1 and rect2 are referring to it. The next statement modifies the Length of that rectangle
object:

rect2.Length = 100.0;

This statement references the memory location pointed to by rect2 (which happens to be the
same memory location pointed to by rect1) and modifies the Length of the Rectangle object.
Now, if you attempt to reference the same memory location via the rect1 object, you get the
modified object and the following code displays the value “rect1.Length = 100”:

Console.WriteLine(“rect1.Length = {0}”,
 rect1.Length);

Encapsulation is a mechanism to restrict access to a class or class members in order to hide
design decisions that are likely to change. Encapsulation gives class designers the flexibility to
change a section of code when needed without changing all the other code that makes use of
that code. Also, when you hide information, you hide the complexity associated with it. As
a result, with the help of encapsulation, you can write code that is easier to understand and
maintain.

In the previous exercises, you saw encapsulation at work when you declared the data members
as private and enforced data-field initialization via a constructor. Because the data members
are hidden from the users of the class, the developer of the Rectangle class can change the
names of the data fields without requiring any changes in the calling code.

Properties offer a great way to encapsulate data fields along with any accompanying logic.
Also, access modifiers such as private and public allow you to control the level of access for a
class member or for the class itself.

In this section, you’ll learn more about access modifiers and how they work.

CERTIFICATION READY
Do you understand
data types and memory
allocation?
1.1

■ Understanding Encapsulation

Encapsulation is an information-hiding mechanism that makes code easy to maintain and
understand.THE BOTTOM LINE

✚ MORE INFORMATION
Objects are always allocated memory on the heap. The heap is the memory available to a program at runtime for
dynamic memory allocation. In contrast, some data items can be created on the execution stack or the call stack.
Items created on the stack are the method parameters and the local variables declared within a method. The
stack memory is reclaimed when the stack unwinds (when a method returns, for example). The memory allocated
in the heap is automatically reclaimed by the garbage collector when the objects are not in use any more (i.e.,
no other objects are holding a reference to them).

c02Introductionto ObjectOriented47 Page 47 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented47 Page 47 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

48 | Lesson 2

All types and type members have an access level that specifies where that class or its members
can be used in your code. The access level can be set using one of the access modifiers speci-
fied in Table 2-1.

Understanding Access Modifiers

Access modifiers control where a type or type member can be used.

Table 2-1

Access Modifiers

ACCESS MODIFIER DESCRIPTION

public Access is not restricted.

private Access is restricted to the containing class.

protected Access is restricted to the containing class and to any class that is derived directly or indirectly from
the containing class. (You’ll learn more about derived classes later in this lesson, in the section entitled
“Understanding Inheritance.”)

internal Access is restricted to the code in the same assembly.

protected internal A combination of protected and internal—that is, access is restricted to any code in the same assembly
and only to derived classes in another assembly.

Access modifiers are not allowed in namespace declarations; public access is implied for
namespaces. The top-level classes (declared directly under a namespace) can be only public or
internal. The internal access modifier is the default for a class if no access modifier is speci-
fied. (For instance, the class Rectangle defined in the previous exercise defaults to having an
internal access.) The accessibility of a nested class may not be less restrictive than the acces-
sibility of the containing class.

You should use the most
restrictive access level
that makes sense for a
type member.

TAKE NOTE*

CERTIFICATION READY
Do you understand
encapsulation?
2.4

TAKE NOTE*
When C# code is compiled, the output executable code contained within a .dll or an .exe
file is also called as an assembly. An assembly is a unit of executable code that can be
independently versioned and installed.

■ Understanding Inheritance

THE BOTTOM LINE

Inheritance is a feature of object-oriented programming that allows you to develop a class
once, and then reuse that code over and over as the basis of new classes. Inheritance
enables you to create new classes that reuse, extend, and modify the functionality defined
in existing classes. The class that inherits the functionality is called a derived class, and the
class whose functionality is inherited is called a base class. A derived class inherits all the
functionality of the base class and can also define additional features that make it different
from the base class.

c02Introductionto ObjectOriented48 Page 48 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented48 Page 48 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 49

Say that we want to create a set of classes that describes polygons such as rectangles or trian-
gles. These classes will have some common properties, such as width and length. For this case,
you can create a base class Polygon with the Width and Length properties, and the derived
classes Rectangle and Triangle will inherit these properties while providing their own func-
tionality. The following exercise explains this concept in more detail.

CREATE DERIVED CLASSES

USE the project you saved in the previous exercise to perform the following actions:

 1. Add a new class named Polygon as shown below:

 class Polygon

 {

 public double Length { get; protected set; }

 public double Width { get; protected set; }

 }

 2. Modify the Rectangle class as shown below:

 class Rectangle: Polygon

 {

 public Rectangle(double length, double width)

 {

 Length = length;

 Width = width;

 }

 public double GetArea()

 {

 return Width * Length;

 }

 }

 3. Now, modify the code of the Main method as shown below:

 static void Main(string[] args)

 {

 Rectangle rect = new Rectangle(10, 20);

 Console.WriteLine(

 “Width={0}, Length={1}, Area = {2}”,

 rect.Width, rect.Length, rect.GetArea());

 }

 4. Select Debug > Start Without Debugging. A console window will pop up to display
the width, length, and the area of the rectangle.

 5. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

To define a derived class, you put a colon after the derived class name, followed by the name
of the base class. Here, the Polygon class is the base class for the Rectangle class.

Unlike classes, the
structs do not support
inheritance.

TAKE NOTE*

c02Introductionto ObjectOriented49 Page 49 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented49 Page 49 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

50 | Lesson 2

The properties Length and Width in the Polygon class are declared with a protected access modifier
for the set accessor. This means that access to the set accessor is available only inside the Polygon
class and its derived classes. You can still get the value of the Length and Width properties in the
Main method, but you’ll get an error if you attempt to assign a value to these properties.

The Rectangle class inherits all the non-private data and behavior of the Polygon class. In
addition, the Rectangle class defines additional functionality (GetArea method) that is not
available in the base class.

Understanding Abstract and Sealed Classes

The abstract classes provide a common definition of a base class that can be shared by
multiple derived classes. The sealed classes, on the other hand, provide complete func-
tionality but cannot be used as base classes.

In the previous exercise, you defined a GetArea method on the Rectangle class. Suppose you
want to create another class, Triangle, that is of the Polygon type. Here, you’ll need a GetArea
method in the Triangle class that will calculate a triangle’s area.

Often, base classes act as the repository of common functionality. In the case of Polygon, the
polygon itself won’t know how to calculate the area without knowledge of the shape type. But
in general, we can expect all classes of the Polygon type to be able to calculate their area. Such
expectations can be rolled over to the base class with the help of an abstract keyword.

CREATE ABSTRACT CLASSES

USE the project you saved in the previous exercise, and perform the following steps.

 1. Modify the Polygon class as shown below:

 abstract class Polygon
 {
 public double Length { get; protected set; }
 public double Width { get; protected set; }
 abstract public double GetArea();
 }

 2. Modify the Rectangle class as shown below:

 class Rectangle: Polygon
 {
 public Rectangle(double length, double width)
 {
 Length = length;
 Width = width;
 }
 public override double GetArea()
 {
 return Width * Length;
 }
 }

 3. Note that no modification to the Main method is needed.

 4. Select Debug > Start Without Debugging. A console window will pop up to display
the width, length, and the area of the rectangle.

 5. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

c02Introductionto ObjectOriented50 Page 50 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented50 Page 50 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 51

This version of the Polygon class defines a method named GetArea. The main reason for
including this method in the base class is that now the base class can provide a common
template of functionality for the derived classes. But, as we discussed, the Polygon base class
doesn’t know enough to calculate the area of the shape. This situation can be handled by
marking the method as abstract. An abstract method provides a definition but does not offer
any implementation (the method body). If any of the members of a class are abstract, the
class itself needs to be marked as abstract. An abstract class cannot be instantiated.

Derived classes can provide an implementation of an abstract class to create a concrete class
(a non-abstract class). The derived classes can offer an implementation of an abstract method
by overriding it in a derived class. For example, the Rectangle class overrides the abstract
GetArea method of the base class and provides a full implementation. As a result, the
Rectangle class is no longer an abstract class and can be instantiated directly.

Sealed classes, on the other hand, are defined when your implementation is complete and you
do not want a class to be inherited. A sealed class can be created by using the keyword sealed,
as in the following example:

sealed class Rectangle: Polygon

{

 // class members here

}

Because Rectangle is a sealed class, it cannot be a used as a base class. It is also possible to
mark selected class members as sealed to avoid them being overridden in a derived class. For
example, you could say:

sealed public override double GetArea()

{

 return Width * Length;

}

This declaration ensures that the method GetArea cannot be overridden in a derived class.

You cannot create
instances of an abstract
class.

TAKE NOTE*

C# does not support
inheriting from more
than one base class,
often referred to as
multiple inheritance.

TAKE NOTE*

Inheriting from the Object Class

The Object class is the ultimate base class of all the classes in the .NET Framework.

All classes in the .NET Framework inherit either directly or indirectly from the Object class.
For example, when you declared the following class earlier in this lesson:

class Polygon

{

 public double Length { get; protected set; }

 public double Width { get; protected set; }

}

it was functionally equivalent to the following declaration:

class Polygon: Object

{

 public double Length { get; protected set; }

 public double Width { get; protected set; }

}

c02Introductionto ObjectOriented51 Page 51 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented51 Page 51 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

52 | Lesson 2

However, you are not required to declare the Polygon class in the latter way because inheri-
tance from the Object class is implicitly assumed. As part of this inheritance, a derived class
can override the methods of the Object class. Two of the most common methods for doing
this are as follows:

• Equals: Supports comparison between two objects, and returns true if the two objects
have the same value.

• ToString: Returns a string representation of the class. By default, it returns the full
name of the class. It is often useful to override this method so that it returns a string
representation of the current state of the object.

The following example shows how you can override the ToString method in the Rectangle
class:

class Rectangle: Polygon

{

 public Rectangle(double length, double width)

 {

 Length = length;

 Width = width;

 }

 public override double GetArea()

 {

 return Width * Length;

 }

 public override string ToString()

 {

 return String.Format(

 “Width = {0}, Length = {1}”,

 Width, Length);

 }

}

Casting between Types

In C#, the runtime allows you to cast an object to any of its base types.

Derived classes have an “is-a” relationship with their base class. For example, we can say that
the Rectangle is a Polygon. Thus, an object of the Rectangle class has effectively two data
types in this case: the object is a Rectangle, and the object is also a Polygon.

In C#, the runtime allows you to cast an object to its class or to any of its base classes. For
example, you can say:

Polygon p = new Rectangle(10, 20);

Here, a new Rectangle object is created and is cast to its base type Polygon. C# doesn’t require
any special syntax to do this, because cast to base type is considered a safe conversion.

c02Introductionto ObjectOriented52 Page 52 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented52 Page 52 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 53

Casting is also possible the other way round. For example, you can say:

Object o = new Rectangle(10, 20);

…

Rectangle r = (Rectangle) o;

Here, a Rectangle object is first assigned to an Object (the ultimate base class), and the resul-
tant object is then cast back as a Rectangle. When the latter assignment happens, an explicit
cast is required because you are converting a more general object to a less general object. The
runtime checks whether the value of the variable o is compatible with the Rectangle class.
If, at execution time, the value of o is not compatible with the Rectangle class, the runtime
throws a System.InvalidCastException.

USING THE IS OPERATOR
To avoid runtime errors such as the InvalidCastException, the is operator can be used to
check whether the cast is allowed before actually performing the cast, as in this example:

if (o is Rectangle)

{

Rectangle r = (Rectangle) o;

}

Here, the runtime checks the value of the object o. Then, the cast statement is only executed
if o contains a Rectangle object.

USING THE AS OPERATOR
Another useful cast operator is the as operator. The as operator is similar to the cast operation
but, in the case of as, if the type conversion is not possible, null is returned instead of raising
an exception. For example, consider the following code:

Rectangle r = o as Rectangle;

if (r != null)

{

 // do something

}

If, at runtime, it is not possible to cast the value of variable o to a rectangle, a value of null is
assigned to the variable r. No exceptions will be raised.

CERTIFICATION READY
Do you understand
inheritance?
2.2

If you are using the as
operator to convert a
type, the is operator
check is not necessary.
You can simply check
the return value from as
against null.

TAKE NOTE*

■ Understanding Polymorphism

Polymorphism is the ability of derived classes to share common functionality with base
classes but still define their own unique behavior.THE BOTTOM LINE

You are developing an application that allows users to work with different kind of polygons.
You have a collection that contains several types of polygons, such as a rectangle, a triangle,
and a square. Each polygon provides you with its own implementation of the Draw method.
When you work with this collection, you don’t necessarily know exactly which shape you

c02Introductionto ObjectOriented53 Page 53 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented53 Page 53 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

54 | Lesson 2

are working with, but you would like the correct Draw method to be invoked each time.
Polymorphism enables you to do exactly this.

Polymorphism allows the objects of a derived class to be treated at runtime as objects of the
base class. When a method is invoked at runtime, its exact type is identified, and the appro-
priate method is invoked from the derived class.

USE POLYMORPHISM

USE the project you saved in the previous exercise to carry out the following steps:

 1. Modify the Polygon class as shown below:

class Polygon

{

 public virtual void Draw()

 {

 Console.WriteLine(“Drawing: Polygon”);

 }

}

 2. Modify the Rectangle class as shown below:

class Rectangle: Polygon

{

 public override void Draw()

 {

 Console.WriteLine(“Drawing: Rectangle”);

 }

}

 3. Add a new class called Triangle, as shown below:

class Triangle: Polygon

{

 public override void Draw()

 {

 Console.WriteLine(“Drawing: Triangle”);

 }

}

 4. Modify the Main method as follows:

static void Main(string[] args)

{

 List<Polygon> polygons = new List<Polygon>();

 polygons.Add(new Polygon());

 polygons.Add(new Rectangle());

 polygons.Add(new Triangle());

c02Introductionto ObjectOriented54 Page 54 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented54 Page 54 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 55

 foreach (Polygon p in polygons)

 {

 p.Draw();

 }

}

 5. Select Debug > Start Without Debugging. A console window will pop up to display
the drawing message for each polygon.

 6. SAVE your project.

PAUSE. Leave the project open to use in the next exercise.

In this exercise, the definitions of the Polygon and the Rectangle class are simplified to
emphasize the concept of polymorphism. The base class provides a single Draw method. The
important thing to note here is the keyword virtual. This keyword allows the derived classes
to override the method.

Both the Rectangle and Triangle classes override the base class Draw method with their own
definition by using the override keyword. When executed, the Main method generates the fol-
lowing output:

Drawing: Polygon

Drawing: Rectangle

Drawing: Triangle

The List<Polygon> data type is capable of storing a collection of objects that are of type
Polygon or types that derive from Polygon. The foreach loop is iterating over a collection of
Polygon objects. The underlying type of the first object is Polygon, but the second and third
objects in the collection are actually Rectangle and Triangle objects that just happen to be cast
as Polygons. The runtime will look at the actual underlying type and invoke the overridden
method from the derived class. That’s the reason why the derived class version of the Draw
method is called for both Rectangle and Triangle objects.

Understanding the Override and New Keywords

The override keyword replaces a base class member in a derived class. The new keyword
creates a new member of the same name in the derived class and hides the base class
implementation.

When a base class defines a virtual member, the derived class has two options for handling
it—specifically, the derived class can use either the override keyword or the new keyword. The
override keyword takes priority over the base-class definition of the member. Here, the object
of the derived class will call the overridden member instead of the base-class member.

In comparison, if the new keyword is used, a new definition of the member is created and the
base-class member is hidden. However, if the derived class is cast to an instance of the base
class, the hidden members of the class can still be called.

c02Introductionto ObjectOriented55 Page 55 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented55 Page 55 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

56 | Lesson 2

To better understand these concepts, modify the Triangle method from the previous exercise
to the following:

class Triangle: Polygon

{

 public new void Draw()

 {

 Console.WriteLine(“Drawing: Triangle”);

 }

}

Then, modify the code in the Main class to the following:

Triangle t = new Triangle();

t.Draw();

Polygon p = t;

p.Draw();

The program will produce the following output:

Drawing: Triangle

Drawing: Polygon

Here, when the Draw method is directly invoked on the object of the derived class, the new
version of the method is used. However, if the method is executed when the derived class is
cast as a base class, the hidden base-class version of the Draw method is executed.

If the method in the
derived class is not
preceded by the new
keyword or the override
keyword, the compiler
will issue a warning, and
the method will behave
as if the new keyword
were present.

TAKE NOTE*

CERTIFICATION READY
Do you understand
polymorphism?
2.3

The System.Object class provides a ToString method. By convention, you should use this
method to return the human-readable representation for a class. When you create your
types, it is good practice to override this method to return readable information about the
objects.

TAKE NOTE*

■ Understanding Interfaces

Interfaces are used to establish contracts through which objects can interact with each
other without knowing the implementation details.THE BOTTOM LINE

Interfaces are defined by using the interface keyword. An interface definition consists of a set
of signatures for methods, properties, delegates, events, or indexers. An interface definition
cannot consist of any data fields or any implementation details such as method bodies.

A common interface defined in the System namespace is the IComparable namespace. This is
a simple interface defined as follows:

interface IComparable

{

 int CompareTo(object obj);

}

By convention, all
interfaces defined in
the .NET Framework
begin with a capital I.
Although you are free
to name your interfaces
as you wish, it is best to
follow the Framework
convention.

TAKE NOTE*

c02Introductionto ObjectOriented56 Page 56 2/25/11 2:03:29 PM f-392c02Introductionto ObjectOriented56 Page 56 2/25/11 2:03:29 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 57

The IComparable interface has a single method (CompareTo) that accepts an object and
returns an int. The return value of this method indicates the result of comparing the given
parameter with the current object. According to the documentation of the CompareTo
 method:

• If the instance is equal to the parameter, CompareTo returns 0.

• If the parameter value is less than the instance or if the parameter is null, then a positive
value is returned.

• If the parameter value is greater than the instance, then a negative value is returned.

• If the parameter is not of the compatible type, then an ArgumentException is thrown.

How does IComparable decide how to compare two Rectangle objects or two Employee
objects? It doesn’t. The classes that are interested in such comparisons must implement the
IComparable interface by providing a method body for the CompareTo method. Each class
that implements IComparable is free to provide its own custom comparison logic inside the
CompareTo method.

USE THE ICOMPARABLE INTERFACE

USE the project you saved in the previous exercise to carry out the following steps:

 1. Modify the Rectangle class as shown below:

class Rectangle: Polygon, IComparable

{

 public double Length { get; set; }

 public double Width { get; set; }

 public override void Draw()

{

 Console.WriteLine(“Drawing: Rectangle”);

 }

 public double GetArea()

 {

 return Length * Width;

 }

 public int CompareTo(object obj)

 {

 if (obj == null)

 return 1;

 if (!(obj is Rectangle))

 throw new ArgumentException();

 Rectangle target = (Rectangle)obj;

 double diff = this.GetArea() - target.GetArea();

c02Introductionto ObjectOriented57 Page 57 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented57 Page 57 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

58 | Lesson 2

 if (diff == 0)

 return 0;

 else if (diff > 0)

 return 1;

 else return -1;

 }

}

 3. Then, modify the Main method as shown below:

static void Main(string[] args)

{

 Rectangle rect1 = new Rectangle

 { Length = 10, Width = 20 };

 Rectangle rect2 = new Rectangle

 { Length = 100, Width = 200 };

 Console.WriteLine(rect1.CompareTo(rect2));

}

 4. Select Debug > Start Without Debugging. A console window will pop up and display
the value –1 because the area of rect1 is less than the area of rect2.

 5. SAVE your project.

Here, the class Rectangle both derives from the Polygon class and implements the
IComparable interface. A class that implements an interface must implement all the methods
declared in that interface.

An interface is similar to an abstract class, but there are some noticeable differences. For
one, an abstract class provides incomplete implementation, whereas an interface provides
no implementation at all. A class can also implement multiple interfaces but is limited to
inheriting from only a single base class.

So, how do you decide whether to use an abstract class or an interface? One way is to check
whether an “is-a” relationship exists between the two concepts. For example, if an inheri-
tance relationship exists between a SalariedEmployee and an Employee, then you can use an
abstract class to standardize common functionality among derived classes. On the other hand,
there is no “is-a” relationship between an Employee and the IComparable. Therefore, the
comparison functionality is best implemented as an interface.

CERTIFICATION READY
Do you understand
encapsulation?
2.4

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• Objected-oriented programming is a programming technique that makes use of objects.
Objects are self-contained data structures that consist of properties, methods, and events.
Properties specify the data represented by an object, methods specify an object’s behavior,
and events provide communication between the objects.

• A class is the template from which individual objects are created.

• Constructors are used to initialize the data members of an object.

c02Introductionto ObjectOriented58 Page 58 3/8/11 3:55:57 PM user-F391c02Introductionto ObjectOriented58 Page 58 3/8/11 3:55:57 PM user-F391 /Users/user-F391/Desktop/Users/user-F391/Desktop

Introduction to Object-Oriented Programming | 59

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. A(n) __________ is a blueprint of an object.

 2. A class that does not provide a complete implementation must be declared with the
keyword __________.

 3. Classes that want to support comparison must implement the IComparable interface and
then provide a body for the __________ method.

 4. You can use the __________ operator to check whether it is legal to cast one type to
another type.

■ Knowledge Assessment

• The this keyword can be used to access members from within constructors, instance meth-
ods, and the accessors of instance properties.

• Delegates are special types that are used to encapsulate a method with a specific
signature.

• Events are a way for a class to notify other classes or objects when something of interest
happens. The class that sends a notification is called the publisher of the event, and the
class that receives the notification is called the subscriber of the event.

• Namespaces allow you to organize code and create unique class names.

• The static keyword is used to declare members that do not belong to individual objects but
to a class itself.

• A value type directly stores a value, whereas a reference type only stores a reference to an
actual value.

• The keyword struct is used to create user-defined types that consist of small groups of
related fields. Structs are value types, whereas classes are reference types.

• Encapsulation is a mechanism to restrict access to a class or class members in order to
hide design decisions that are likely to change. Encapsulation provides class designers with
the flexibility to change a section of code as needed without changing all other code that
makes use of that code.

• An access modifier specifies what region of the code will have access to a field. For
example, a public access modifier does not limit access, but a private access modifier limits
access within the class in which the field is defined.

• Inheritance enables you to create new classes that reuse, extend, and modify the function-
ality defined in existing classes. The class that inherits functionality is called a derived class,
and the class whose functionality is inherited is called a base class.

• Polymorphism is the ability of derived classes to share common functionality with base
classes but still define their own unique behavior.

• The override keyword replaces a base-class member in a derived class. The new keyword
creates a new member with the same name in the derived class and hides the base-class
implementation.

c02Introductionto ObjectOriented59 Page 59 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented59 Page 59 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

60 | Lesson 2

 5. Three main features of an object-oriented programming language are _________,
__________, and _ _________.

 6. You can use __________ to group related classes in order to reduce name collisions.

 7. The __________ keyword refers to the current instance of a class.

 8. A(n) __________ is a type that references a method.

 9. A(n) __________ is a value type, whereas a(n) __________ is a reference type.

 10. You can use the __________ keyword to declare a member that belongs to the class
itself rather than to a specific object.

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. You want to restrict the access for a method to the containing class or to a class that
is derived from the containing class. Which access modifier should you use for this
 method?
a. public
b. private
c. protected
d. internal

 2. In a class, you defined a method called Render. This method provides functionality to
render bitmap files on the screen. You would like the derived classes to supersede this
functionality to support the rendering of additional image formats. You also want the
Render method of the derived classes to be executed even if a derived class is cast as the
base class. Which keyword should you use with the definition of the Render method in
the base class?
a. abstract
b. virtual
c. new
d. overrides

 3. You defined a class AdvMath that defines advanced mathematical functionality. You do
not want the functionality of this class to be inherited into derived classes. What
keyword should you use to define the AdvMath class?
a. sealed
b. abstract
c. private
d. internal

 4. You need to provide query functionality to several of your classes. Each class’s algorithm
for the query will likely be different. Also, not all the classes have an “is-a” relationship
with each other. How should you support this functionality?
a. Add the query functionality to a base class with the public access modifier
b. Have all the classes inherit from an abstract base class and override the base-class

method to provide their own query functionality
c. Have all the classes inherit from a base class that provides the query functionality
d. Create a common interface that is implemented by all the classes

 5. Which of the following class elements should you use to define the behavior of a class?
a. Method
b. Property
c. Event
d. Delegate

c02Introductionto ObjectOriented60 Page 60 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented60 Page 60 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 61

 6. You are writing code for a class named Product. You need to make sure that the data mem-
bers of the class are initialized to their correct values as soon as you create an object of the
Product class. The initialization code should be always executed. What should you do?
a. Create a static method in the Product class to initialize data members
b. Create a constructor in the Product class to initialize data members
c. Create a static property in the Product class to initialize data members
d. Create an event in the Product class to initialize data members

 7. You are creating a new class named Square that is derived from the Polygon class. The
Polygon class has the following code:

class Polygon

{

 public virtual void Draw()

 {

 // additional code . . .

 }

}

 The Draw method in the Square class should provide new functionality but also hide the
Polygon class implementation of the Draw method. Which code segment should you use
to accomplish this?
a. class Square: Polygon

{

 public override void Draw()

 {

 // additional code . . .

 }

}

b. class Square: Polygon

{

 public new void Draw()

 {

 // additional code . . .

 }

}

c. class Square: Polygon

{

 public virtual void Draw()

 {

 // additional code . . .

 }

}

c02Introductionto ObjectOriented61 Page 61 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented61 Page 61 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

62 | Lesson 2

d. class Square: Polygon

{

 public static void Draw()

 {

 // additional code . . .

 }

}

 8. You are creating a new class named Rectangle. You write the following code:

class Rectangle: IComparable

{

 public double Length { get; set; }

 public double Width { get; set; }

 public double GetArea()

 {

 return Length * Width;

 }

 public int CompareTo(object obj)

 {

 // to be completed

 }

}

 You need to complete the definition of the CompareTo method to enable comparison of
the Rectangle objects. Which of the following codes should you write?
a. public int CompareTo(object obj)

{

 Rectangle target = (Rectangle)obj;

 double diff = this.GetArea() − target.GetArea();

 if (diff == 0)

 return 0;

 else if (diff > 0)

 return 1;

 else return −1;

}

b. public int CompareTo(object obj)

{

 Rectangle target = (Rectangle)obj;

 double diff = this.GetArea() − target.GetArea();

 if (diff == 0)

 return 1;

 else if (diff > 0)

 return −1;

 else return 0;

}

c02Introductionto ObjectOriented62 Page 62 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented62 Page 62 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 63

c. public int CompareTo(object obj)

{
 Rectangle target = (Rectangle)obj;
 if (this == target)
 return 0;
 else if (this > target)
 return 1;
 else return −1;
}

d. public int CompareTo(object obj)
{
 Rectangle target = (Rectangle)obj;
 if (this == target)
 return 1;
 else if (this > target)
 return −1;
 else return 0;
}

 9. You are writing code for a new method named Process:

void Process(object o)

{

}

 The code receives a parameter of type object. You need to cast this object into the type
Rectangle. At times, the value of o that is passed to the method might not be a valid
Rectangle value. You need to make sure that the code does not generate any System.
InvalidCastException errors while doing the conversions. Which of the following lines of
code should you use inside the Process method to accomplish this goal?
a. Rectangle r = (Rectangle) o;
b. Rectangle r = o as Rectangle;
c. Rectangle r = o is Rectangle;
d. Rectangle r = (o != null) ? o as rectangle: (Rectangle) o;

 10. You are writing code to handle events in your program. You define a delegate named
RectangleHandler like this:

public delegate void RectangleHandler(Rectangle rect);

You also create a variable of the RectangleHandler type as follows:

RectangleHandler handler;

 Later in the program, you need to add a method named DisplayArea to the method
invocation list of the handler variable. The signature of the DisplayArea method matches
the signature of the RectangleHandler method. Any code that you write should not
affect any existing event-handling code. Given this restriction, which of the following
codes should you write?
a. handler = new RectangleHandler(DisplayArea);
b. handler = DisplayArea;
c. handler += DisplayArea;
d. handler −= DisplayArea;

c02Introductionto ObjectOriented63 Page 63 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented63 Page 63 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

64 | Lesson 2

■ Competency Assessment

Scenario 2-1: Creating Properties

You need to create a class named Product that represents a product. The class has a single
property named Name. Users of the Product class should be able to get as well as set the value
of the Name property. However, any attempt to set the value of Name to an empty string or
a null value should raise an exception. Also, users of the Product class should not be able to
access any other data members of the Product class. How will you create such a class?

Scenario 2-2: Creating a Struct

You are developing a game that needs to represent the location of a target in three-dimensional
space. The location is identified by the three integer values denoted x, y, and z. You will create
thousands of these data structures in your program, and you need a lightweight, efficient way
to store this data in memory. Also, it is unlikely that you will need to inherit any other types
from this location type. How should you represent the location in your program?

■ Proficiency Assessment

Scenario 2-1: Overriding the ToString Method

Say you are writing code for a Product class. The Product class contains the name and price
of a product. You need to override the base class (System.Object) method ToString to provide
information about the objects of the product class to the calling code. What code do you
need to write for the Product class in order to meet this requirement?

Scenario 2-2: Creating and Handling Events

Imagine that you are writing code for creating and handling events in your program. The
class SampleClass needs to implement the following interface:

public delegate void SampleDelegate();

public interface ISampleEvents

{

 event SampleDelegate SampleEvent;

 void Invoke();

}

You need to write code for the SampleClass and for a test method that creates an instance of
the SampleClass and invokes the event. What code should you write?

c02Introductionto ObjectOriented64 Page 64 2/25/11 2:03:30 PM f-392c02Introductionto ObjectOriented64 Page 64 2/25/11 2:03:30 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding
General Software
Development

LESSON 3

65

You are a software developer for the Northwind Corporation. You work as part of
a team to develop computer programs that solve complex business problems. As a
 developer, you need to be aware of the different phases of the application lifecycle
because you play an important role in multiple parts of this cycle. For instance, not
only do you participate in the design and development portions of the cycle, but you
often need to interact with the software testing team during the testing portion of the
cycle. Sometimes, you even engage in testing yourself, so you need to have a general
understanding of this process.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Application Understand application lifecycle 3.1
Lifecycle Management management.

Understanding Testing Understand application lifecycle 3.1
 management.

Understanding Data Structures Understand algorithms and data 3.3
 structures.

Understanding Sorting Algorithms Understand algorithms and data 3.3
 structures.

K E Y T E R M S

acceptance testing

application lifecycle
management (ALM)

arrays

black-box testing

Bubblesort

data structures

design process

integration testing

linked list

QuickSort

queue

regression testing

release management

requirements analysis

software development

software testing

sorting algorithms

stack

system testing

unit testing

white-box testing

c03Understanding General Softwar65 Page 65 2/26/11 11:42:05 AM f-392c03Understanding General Softwar65 Page 65 2/26/11 11:42:05 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

66 | Lesson 3

Developing a software application involves more than just writing the code. Various other
activities also need to be performed in the right order to develop a successful application.
Collectively, these activities are known as application lifecycle management (ALM). Some of
the activities that are part of the ALM process are shown in Figure 3-1, including require-
ments, design, development, testing, delivery, and release management.

■ Understanding Application Lifecycle Management

Application lifecycle management (ALM) is the set of activities that revolve around a new
software product, from its inception to when the product matures and perhaps retires.THE BOTTOM LINE

Figure 3-1

Application lifecycle
 management Requirements

Maintenance

Testing Development

Design

In this section, you’ll learn about the different activities and roles involved in each stage of the
ALM process.

The application lifecycle starts when the need for a new software application is identified.
A business manager is usually the person who is the sponsor of the project. He or she analyzes
the need, checks how the project fits with the overall strategy of the business, arranges the
funding, and initiates the staffing process for the project.

A project manager is probably the first person hired by the business manager. The project
manager is responsible for the overall execution of the project. His or her key responsibilities
are to make sure that the project stays on budget and finishes on time. The project manager is
also responsible for hiring team members and for facilitating cooperation within the team.

Understanding Requirements Analysis

Requirements analysis is the process of determining the detailed business requirements
for a new software system.

When you develop software, you use various types of data structures and algorithms.
Therefore, you need to know which data structure to use for the task at hand and
what the performance implications of your choice are. You should also have a general
 understanding of various sorting methods.

c03Understanding General Softwar66 Page 66 2/26/11 11:42:06 AM f-392c03Understanding General Softwar66 Page 66 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 67

The design process generates detailed technical specifications that will be used for developing
the system. The output of the design process is a set of technical models and specifications
that provide guidance to the developers and other team members during the software
 development activity. The output of the design process is more abstract than concrete. At this
point, no real system exists that you can interact with.

Some of the most important participants in this stage of the ALM process include an
 architect and a user-experience designer:

• Architect: An architect designs the technical blueprint of the system. This includes
identifying components and services, their behavior, and how they interact with each
other and with the external world.

• User-experience designer: A user-experience designer creates the user experience of the
system. This includes designing the user interface (UI) elements; designing navigation
between various forms, screens, or pages; and so on.

Understanding the Design Process

The design process is used to create plans, models, and architecture for how the software
will be implemented.

Requirements analysis is one of the most important steps in the application lifecycle. Precise,
complete, well-documented requirements are critical to the success of the project. These
requirements can be functional or nonfunctional. Functional requirements specify exactly
what the system is designed to accomplish. In contrast, nonfunctional requirements are
 quality requirements such as scalability, security, reliability, and so on.

A business analyst is responsible for analyzing business needs and converting them into
requirements that can be executed by the development team.

Understanding Software Development

The software development activity involves implementing design by creating software
code, databases, and other related content.

Software development is the portion of the ALM process in which the business requirements
are implemented in working code based on the design that was created in the previous
 activity. At the end of this activity, you have concrete output in form of a software system
with which users can interact.

Critical participants in software development include the following:

• Developers: Developers write code based on the requirements gathered by the business
analyst, the architecture laid down by the architect, and the user experience developed
by the user-experience designer.

• Database administrators (DBAs): DBAs are responsible for implementation and
 maintenance of the software’s databases. DBAs also plan for data integrity, security, and
speed.

• Technical writers: Technical writers develop the system manuals and help files that will
be delivered along with the application.

• Content developers: Content developers are subject matter experts who develop the
 content for the system. For example, if the application is a movie review website, just
deploying the website is not enough—you also need to make sure that the site has
enough content to gather user interest.

c03Understanding General Softwar67 Page 67 2/26/11 11:42:06 AM f-392c03Understanding General Softwar67 Page 67 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

68 | Lesson 3

Software testing is used to assure the quality of the final product. Testing can identify possible
gaps between the system expectations described in the requirements document and actual
 system behavior.

Among the most critical participants in the software testing activity are the testers who verify
the working application to make sure that it satisfies the identified requirements. When these
testers identify any defects in the application, they assign each defect to an appropriate person
who can fix it. For example, a code defect would be assigned back to a developer so he or she
could remedy the error.

Understanding Software Testing

Software testing verifies that the implementation matches the requirements of the system.

Understanding Release Management

The release management activity is used to manage the deployment, delivery, and
 support of software releases.

Release management includes activities such as packaging and deploying the software,
 managing software defects, and managing software change requests.

Major players in the release management activity include the following individuals:

• Release manager: The release manager coordinates various teams and business units to
ensure timely release of a software product.

• Operation staff: The operation staff members make sure that the system is delivered as
promised. This could involve burning DVDs and shipping them as orders are received,
or it could entail maintaining a Software as a Service (SaaS) system on an ongoing basis.
Operation staff are also responsible for releasing any system updates (e.g., bug fixes or
new features).

• Technical support staff: These staffers interact with customers and help solve their
 problems with the system. Technical support can generate valuable metrics about what
areas of the system are most difficult for users and possibly need to be updated in the
next version of the application.

■ Understanding Testing

Software testing is the process of verifying software against its requirements. Testing takes
place after most development work is completed.THE BOTTOM LINE

As previously mentioned, software testing is the process of verifying that a software
 application works as expected and fulfills all its business and technical requirements. When
there is a difference between the expected behavior and the actual behavior of the system,
a software defect (or “bug”) is logged and eventually passed on to an individual who is
 responsible for fixing it.

Software testing may involve both functional and nonfunctional testing. Functional testing
relates to the functional requirements of the system, and it tests those features that make up

CERTIFICATION READY
Do you understand
application lifecycle
management and its
activities?
3.1

c03Understanding General Softwar68 Page 68 2/26/11 11:42:06 AM f-392c03Understanding General Softwar68 Page 68 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 69

It is important to note that the process of software testing can only help find defects—it
cannot guarantee the absence of defects. Complex software has a huge number of possible
execution paths and many parameters that can affect its behavior. It is not feasible and
often not possible to test all the different situations that such software will encounter in a
production environment.

TAKE NOTE*

the core functionality of the system. For example, testing whether users can add items to
a shopping cart is an important part of functional testing for an e-commerce Web site. In
 comparison, nonfunctional testing involves testing software attributes that are not part of
the core functionality but rather part of the software’s nonfunctional requirements, such as
 scalability, usability, security.

Traditionally, there are two broad approaches to software testing:

• Black-box testing
• White-box testing

Black-box testing treats the software as a black box, focusing solely on inputs and outputs.
With this approach, any knowledge of internal system workings is not used during
testing. In contrast, with white-box testing, testers use their knowledge of system internals
when testing the system. For example, in white-box testing, the testers have access to the
source code.

These two testing techniques complement each other. Black-box testing is mostly used to
make sure a software application covers all its requirements. Meanwhile, white-box testing is
used to make sure that each method or function has proper test cases available.

Understanding Testing Methods

Software testing methods are generally divided into two categories: white-box and black-
box testing.

Understanding Testing Levels

Testing is performed at various phases of the application development lifecycle. Different
testing levels specify where in the lifecycle a particular test takes place, as well as what
kind of test is being performed.

Testing levels are defined by where the testing takes place within the course of the software
development lifecycle. Five distinct levels of testing exist:

• Unit testing: Unit testing verifies the functionality of a unit of code. For example, a unit
test may assess whether a method returns the correct value. Unit testing is white-box
testing, and it is frequently done by the developer who is writing the code. Unit testing
often uses an automated tool that can simplify the development of cases and also keep
track of whether a code modification causes any of the existing unit tests to fail. Visual
Studio has built-in support for unit testing. You can also use open-source tools such as
NUnit to automate unit tests for the .NET Framework code.

• Integration testing: Integration testing assesses the interface between software compo-
nents. Integration testing can be performed incrementally as the components are being

c03Understanding General Softwar69 Page 69 2/26/11 11:42:06 AM f-392c03Understanding General Softwar69 Page 69 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

70 | Lesson 3

developed, or it can be performed as a “big bang” when all the components are ready
to work together. The former approach is preferred to the latter because it reduces risk
and increases stakeholders’ confidence as the system is being developed. Integration
 testing can also involve testing the component’s interaction with an external system. For
example, if a component relies on data from an external Web service, integration testing
ensures that the component is working well with the external application.

• System testing: System testing is the overall testing of the software system. At this point,
all the system components are developed and are working together and with any external
systems.

• Acceptance testing: This level of testing is often performed by the customers themselves.
There are generally two levels of acceptance testing prior to broad release of a product:
alpha testing and beta testing. Alpha testing is performed by a limited group of users,
and it is an opportunity to provide an early look at the product to the most important
customers and gather feedback. Alpha releases may miss some features and generally lack
many nonfunctional attributes such as performance. In the next level of testing, beta
testing, you release the product to a wider audience of customers and solicit feedback.
In terms of functionality, the beta release of the software is very close to the final release.
However, the development teams might still be working on improving performance and
fixing known defects.

• Regression testing: As the defects in a software application are reported and fixed, it is
important to make sure that each new fix doesn’t break anything that was previously
working. This is where regression testing comes in handy. With every new fix, software
testers usually run a battery of regression tests to make sure that each functionality that
was already known to work correctly is still working.

It is much more cost-
effective to find defects
earlier (rather than later)
in the product develop-
ment cycle.

TAKE NOTE*

CERTIFICATION READY
Do you understand the
various software testing
methods?
3.1

■ Understanding Data Structures

THE BOTTOM LINE

Data structures are techniques for organizing and storing data in computer memory.
How the data is stored affects how the data is retrieved and manipulated. Understanding a
data structure involves not only understanding the storage pattern, but also knowing what
methods are used to create, access, and manipulate the data structure.

Data structures are the building blocks of most computer programs, and they allow develop-
ers to implement complex functionality. Most programming frameworks provide built-in
support for a variety of data structures and associated methods to manipulate these data
 structures. In this section, you will learn about several distinct types of data structures so that
you are familiar with the general techniques for manipulating them.

Understanding Arrays

An array is a collection of items stored in a contiguous memory location and addressed
using one or more indices.

c03Understanding General Softwar70 Page 70 2/26/11 11:42:06 AM f-392c03Understanding General Softwar70 Page 70 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 71

The variable numbers then acts as a reference to the memory location assigned to the
array. The array name can be used to access each of the array items directly. In the .NET
Framework, all arrays are zero-based—that is, the first item of the array is accessed using an
index of numbers[0], the second item is accessed by numbers[1], and so on.

It is also possible to have multidimensional arrays. A two-dimensional array can be thought of
as a table in which each cell is an array element and can be addressed using the numbers of the
row and column to which it belongs. Both the row number and column number are indexed
by zero. For example, the expression table[2, 3] would refer to an item in the third row and
fourth column of an array by the name table.

COMMON OPERATIONS
Arrays support the following operations:

• Allocation

• Access

To work with an array, you first allocate the memory by creating and initializing the array, as
shown previously. Once the array is allocated, you can access any array element in any order
you please by directly referring to its index. For example, the following code assigns a value of
10 to the fourth item of the array, and twice that value is then assigned to the variable calc:

number[3] = 10;

int calc = number[3] * 2;

An array is a common data structure that represents a collection of items of a similar type.
The items in an array are stored in contiguous memory locations. An array is a homogeneous
data structure because the all the items of an array are of the same data type. Any array item
can be directly accessed by using an index. In .NET Framework, array indexes are zero-based.

INTERNAL REPRESENTATION
In the following code, the first statement creates an array variable, and the second statement
initializes the variable with an array of four integers:

int[] numbers;

numbers = new int[4];

At first, the variable numbers are set to null because the array is not yet initialized. However,
the second statement initializes the array by allocating a contiguous memory space big enough
to store four integers in the memory heap. The starting address in the memory allocation
is stored in the array variable numbers, as shown in Figure 3-2. All the array elements are
 initialized in this case with the value 0 because 0 is the default value for an integer.

Figure 3-2

Internal representation of an
array data structure

nullint [] numbers;

HeapStack

addr 0 0 0 0numbers = new int [4];

c03Understanding General Softwar71 Page 71 2/26/11 11:42:06 AM f-392c03Understanding General Softwar71 Page 71 2/26/11 11:42:06 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

72 | Lesson 3

PERFORMANCE AND USAGE
The contents of an array are laid out as a contiguous block of memory and can be accessed
directly by using the array index. Thus, reading from or writing to an array is extremely fast.
However, arrays are limited by the requirements of homogeneity and fixed size. Although
array size can be increased, doing so requires reallocation of all the array elements and is a
time-consuming operation.

Arrays work best when the number of items in the collection is predetermined and fast, direct
access to each item is required.

In the .NET Framework, you can use the ArrayList class to get around an array’s require-
ments for homogeneity and fixed size. An ArrayList is a collection type that can hold items of
any data type and dynamically expand when needed. However, an ArrayList is not as fast as
an array.

The queue data structure mimics a real-life queue. In a queue, items are processed in the
order in which they were added to the queue. In particular, items are always added at the end
of the queue and removed from the front of the queue. This is also commonly known as first-in,
first-out (FIFO) processing. The capacity of a queue is the number of items the queue can
hold. However, as elements are added to the queue, the capacity is automatically increased.
A queue is also a heterogeneous data structure, meaning that items in a queue can be of
 different data types.

INTERNAL REPRESENTATION
In order to avoid excessive reallocation of memory space and allow easy management, a queue
is often internally implemented as a circular array of objects, as shown in Figure 3-3.

Understanding Queues

A queue is a collection of items in which the first item added to the collection is the first
one to be removed.

Figure 3-3

Internal representation of a
queue data structure

Item 4

Item 5

Tail

Head

27

36

45

18

Item 2

null Item 1

Item 3

null null

Within a queue, the head index points to the first item, and the tail index points to the last
item. In Figure 3-3, for example, the head index points to location 2 on the queue. Because
the queue is circular, as long as you can keep track of the head and tail pointers, it doesn’t
matter what location the queue starts from. When an item is removed, the head moves to the

c03Understanding General Softwar72 Page 72 2/26/11 11:42:09 AM f-392c03Understanding General Softwar72 Page 72 2/26/11 11:42:09 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 73

next item in the queue. When a new item is added, it always appears at the end of the queue,
and the tail starts pointing to the newly added item. Any null slots in a queue (including
the one depicted in Figure 3-3) are the empty spots that can be filled before the queue will
require a memory reallocation.

The.NET Framework provides an implementation of the queue data structure as part of
the Queue class in the System.Collections namespace. In programming languages that don’t
 provide an implementation of a queue, you can write your own Queue class by using an
array-like data structure and simulating the queue operations.

COMMON OPERATIONS
A queue supports the following common operations:

• Enqueue: The enqueue operation first checks whether there is enough capacity available
in the queue to add one more item. If capacity is available, the item is added to the tail
end of the queue. If there is no space available in queue, the array is reallocated by a
prespecified growth factor, and the new item is then added to the queue.

• Dequeue: The dequeue operation removes the current element at the head of the queue
and sets the head to point to the next element.

• Peek: The peek operation allows you to look at the current item at the head position
without actually removing it from the queue.

• Contains: The contains operation allows you to determine whether a particular item
exists in the queue.

PERFORMANCE AND USAGE
A queue is a special-purpose data structure that is best suited for an application in which
you need to process items in the order they were received. Some examples may include print
spoolers, messaging systems, and job schedulers. Unlike an array, a queue cannot be used to
randomly access elements. Operations such as enqueue and dequeue actually add and remove
the items from the queue.

A generic version of the
Queue class is available
as part of the System.
Collections.Generic
namespace. This generic
version is used to create
a queue of items that are
of the same data type.

TAKE NOTE*

Understanding Stacks

A stack is a collection of items in which the last item added to the collection is the first
one to be removed.

As opposed to a queue, a stack is a last-in, first-out (LIFO) data structure. Think of a stack as
similar to a stack of dinner plates on a buffet table; here, the last plate to be added is also the
first plate to be removed. The capacity of a stack refers to the number of items it can hold.
However, as elements are added to a stack, the stack’s capacity is automatically increased.
A stack is a heterogeneous data structure, meaning that the items within it can be of different
data types.

INTERNAL REPRESENTATION
Like a queue, a stack is often implemented as a circular buffer in order to avoid excessive
 reallocation of memory space and permit easier management. A stack can be visualized just
like the queue shown in Figure 3-3, except that the tail is now called the top of the stack and
the head is now called the bottom of the stack.

c03Understanding General Softwar73 Page 73 2/26/11 11:42:12 AM f-392c03Understanding General Softwar73 Page 73 2/26/11 11:42:12 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

74 | Lesson 3

New items are always added to the top of a stack; when this happens, the top of the stack
starts pointing to the newly added element. Items are also removed from the top of the
stack, and when that happens, the top of the stack is adjusted to point to the next item in
the stack.

The .NET Framework provides an implementation of the stack data structure as part of
the Stack class in the System.Collections namespace. In programming languages that don’t
 provide an implementation of the stack, you can write your own Stack class by using an
array-like data structure and simulating the stack operations.

COMMON OPERATIONS
A stack supports the following common operations:

• Push: The push operation first checks whether there is enough capacity available in the
stack to add one more item. If capacity is available, the item is added to the top of the
stack. If there is no space in the stack, the array is reallocated by a prespecified growth
factor, and then the new item is added to the stack.

• Pop: The pop operation removes the element at the top of the stack and sets the top to
point to the next element in the stack.

• Peek: The peek operation allows you to look at the current item at the top of the stack
without actually removing it from the stack.

• Contains: The contains operation allows you to determine whether a particular item
exists in the stack.

PERFORMANCE AND USAGE
A stack is a special-purpose data structure that is best suited for applications in which you
need to process items in last-in, first-out order. Stack are useful structures because of their
applications in runtime memory management, expression evaluation, method-call tracking,
etc. Unlike an array, a stack cannot be used to access elements randomly. Operations such as
push and pop actually add and remove the items from the stack.

A generic version of the
Stack class is available
as part of the System.
Collections.Generic
namespace. This generic
version is used to create
a stack of items that are
of the same data type.

TAKE NOTE*

Linked Lists

A linked list is a collection of nodes arranged so that each node contains a link to the
next node in the sequence.

A linked list is a collection of nodes in which each node contains a reference (or link) to the
next node in the sequence. Unlike an array, the items in a linked list need not be contiguous;
therefore, a linked list does not require reallocation of memory space for the entire list when
more items must be added.

INTERNAL REPRESENTATION
In memory, a linked list can be visualized as a collection of nodes, as shown in Figure 3-4.

Figure 3-4

Internal representation of a
single linked-list data structure

A

Head Null

B C

c03Understanding General Softwar74 Page 74 2/26/11 11:42:12 AM f-392c03Understanding General Softwar74 Page 74 2/26/11 11:42:12 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 75

At each node of a doubly linked list, one link is a forward reference that points to the next
node in the sequence, and the other link is a backward reference that points to the previous
node in the sequence. As you can imagine, a doubly linked list is easy to traverse in either
direction.

The .NET Framework provides a LinkedList class as part of the System.Collections.Generic
namespace. This class implements a homogeneous doubly linked list of the specified data
type. You can also write your own classes to implement a different kind of linked-list
 implementation.

COMMON OPERATIONS
A linked list supports the following common operations:

• Add: Adding or inserting an item in a linked list is a matter of changing links, as shown
in Figure 3-6. Say you want to insert a new node (with value Z) between the nodes with
values A and B. First, you need to allocate memory for the new node and assign value Z

Each node in a linked list contains of two pieces of information: the data corresponding to
the node, and the link to the next node. The first node of the list is called the head node.
Using the link in the head node, you can get to the next node and continue traversing nodes
until the final link is a null value. Often, the term tail is used to refer to the list pointed to by
the head node—that is, it refers to everything after the head node. Thus, in Figure 3-4, the
tail is the linked list starting from node B.

Several other implementations of linked lists may also be used depending on requirements.
For instance, in a circular linked list, the last node in the list points back to the first node to
create a circle. In contrast, in a doubly linked list, each node contains two links, as shown in
Figure 3-5.

Figure 3-5

Internal representation of a
doubly linked list data structure A

Null

Null

Head

B C

A

Head Null

New nodeZ

New nodeZ

B C

A B C

Head Null

Figure 3-6

Adding a new node to a linked
list

c03Understanding General Softwar75 Page 75 2/26/11 11:42:14 AM f-392c03Understanding General Softwar75 Page 75 2/26/11 11:42:14 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

76 | Lesson 3

to the data section of the node. Next, you must copy the link section of node A to the
link section of node Z so that node Z is pointing to node B. Finally, you must copy the
address of the newly created node Z to the link section of node A so that node A starts
pointing to node Z.

• Remove: Similar to the add operation, the remove or delete operation is also a mat-
ter of changing links. For example, to delete the third node in Figure 3-4, you would
change the link for the second node to a null value. The third node will now be an
unreferenced piece of memory, and it will eventually be returned to the pool of avail-
able memory.

• Find: The find operation finds a node with a given value in the linked list. To find a
value, you generally start from the head node and check whether the value matches.
If not, you follow the link to the next node and continue the find operation until you
reach the end of the list, which happens when you encounter a null link.

PERFORMANCE AND USAGE
A linked list does not allow random access to its items. The only way to get to an item is to
start from the head node and follow the links from there. As a result, linked lists are slow
at retrieving data. However, for insert and delete operations, linked lists are extremely fast,
because insertion or deletion of a node involves simply changing a link. Linked lists also have
no maximum capacity after which their contents need to be reallocated.

In fact, a linked list provides an alternative way to implement the queue and the stack data
structures. If your requirements call for frequent access to data but you seldom need to
insert or delete data, an array is the preferred implementation. If, however, your require-
ments call for frequent insert and delete operations, then a linked list may be a better
implementation.

CERTIFICATION READY
Do you understand the
common data structures?
 3.2

Sorting algorithms are algorithms that arrange the items in a list in a certain order. For
 example, you can use a sorting algorithm to sort a list of students in ascending order of their
last name. In the early days of data processing, sorting was an important problem that attracted
a lot of research. These days, you can find basic sorting capabilities already built into most
popular libraries and data structures. For example, in the .NET Framework, you can make
use of the Array.Sort method to sort an array. However, it is still important to look at sorting
as a way to understand problem solving and algorithm analysis.

In this section, you will take a look at two common sorting algorithms, BubbleSort and
QuickSort.

Understanding BubbleSort

The BubbleSort algorithm uses a series of comparison and swap operations to arrange
the elements of a list in the correct order.

■ Understanding Sorting Algorithms

Sorting algorithms, such as BubbleSort and QuickSort, arrange items in a list in a
particular order. Understanding sorting algorithms can help you understand, analyze, and
compare different methods of problem solving.

THE BOTTOM LINE

c03Understanding General Softwar76 Page 76 2/26/11 11:42:18 AM f-392c03Understanding General Softwar76 Page 76 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 77

BubbleSort works by comparing two elements to check whether they are out of order; if they
are, it swaps them. The algorithm continues to do this until the entire list is in the desired
order. BubbleSort gets its name from the way the algorithm works: As the algorithm progresses,
the smaller items are “bubbled” up.

Let’s visualize BubbleSort with the help of an example. Say you want to arrange all the items
in the following list in ascending order: (20, 30, 10, 40). These items should be arranged
from smallest to largest. The BubbleSort algorithm attempts to solve this problem in one or
more passes, with each pass completely scanning the list of items. If the algorithm encounters
out-of-order elements, it swaps them. The algorithm finishes when it scans the whole list
without swapping any elements. If there were no swaps, then none of the elements were out
of order and the list has been completely sorted.

Table 3-1

BubbleSort first pass STEP BEFORE AFTER COMMENTS

1 20, 30, 10, 40 20, 30, 10, 40 The algorithm compares the first two
 elements (20 and 30); because they are in
the correct order, no swap is needed.

2 20, 30, 10, 40 20, 10, 30, 40 The algorithm compares the next two
 elements (30 and 10); because they are
out of order, the elements are swapped.

3 20, 10, 30, 40 20, 10, 30, 40 The algorithm compares the next two
 elements (30 and 40); because they are in
the correct order, no swap is needed.

As shown in Table 3-1, at the end of first pass, BubbleSort has performed one swap, and there
is the possibility that the items are not yet completely sorted. Therefore, BubbleSort gives the
list another pass, as depicted in Table 3-2.

STEP BEFORE AFTER COMMENTS

1 20, 10, 30, 40 10, 20, 30, 40 The algorithm compares the first two
 elements (20 and 10); because they are
out of order, the elements are swapped.

2 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (20 and 30); because they are in
the correct order, no swap is needed.

3 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (30 and 40); because they are in
the correct order, no swap is needed.

Table 3-2

BubbleSort second pass

c03Understanding General Softwar77 Page 77 2/26/11 11:42:18 AM f-392c03Understanding General Softwar77 Page 77 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

78 | Lesson 3

STEP BEFORE AFTER COMMENTS

1 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the first two
 elements (10 and 20); because they are in
the correct order, no swap is needed.

2 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (20 and 30); because they are in
the correct order, no swap is needed.

3 10, 20, 30, 40 10, 20, 30, 40 The algorithm compares the next two
 elements (30 and 40); because they are in
the correct order, no swap is needed.

Table 3-3

BubbleSort third pass

At the end of second pass, BubbleSort has performed one more swap, so it can’t yet guarantee
that the list is completely sorted. Thus, BubbleSort gives the list another pass, as shown in
Table 3-3.

At the end of the third pass, BubbleSort didn’t perform any swaps. This guarantees that the
list is now in sorted order and the algorithm can finish.

In C#, the BubbleSort algorithm can be expressed by the following method:

static int[] BubbleSort(int[] numbers)

{

 bool swapped;

 do

 {

 swapped = false;

 for (int i = 0; i < numbers.Length � 1; i��)

 {

 if (numbers[i] > numbers[i � 1])

 {

 //swap

 int temp = numbers[i � 1];

 numbers[i � 1] = numbers[i];

 numbers[i] = temp;

 swapped = true;

 }

 }

 } while (swapped == true);

 return numbers;

}

When using BubbleSort,
you can be assured that
an array will be sorted
in one less pass than
the number of items.
So, if there are four
items (as in the example
 scenario), the array will
be sorted (no matter
what order it starts in)
in three passes.

TAKE NOTE*

c03Understanding General Softwar78 Page 78 2/26/11 11:42:18 AM f-392c03Understanding General Softwar78 Page 78 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 79

The QuickSort algorithm uses the divide-and-conquer technique to continually partition a
list until the size of the problem is small and hardly requires any sorting. The following steps
explain this process in greater detail:

• A list of size zero or one is always sorted by itself.

• For a bigger list, pick any element in the list as a pivot element. Then, partition the list
in such a way that all elements smaller than or equal to the pivot element go into the left
list and all elements bigger than the pivot element go into the right list. Now, the com-
bination of the left list, pivot element, and right list is always in sorted order if the left
and the right list are in sorted order.

• The problem is now partitioned into two smaller lists, the left list and the right list.

• Both these lists are solved using the technique described in the bullets above.

• Finally, all the small sorted lists are merged in order to create the final complete sorted
list.

The following table explains the QuickSort algorithm with a brief example.

Understanding QuickSort

The QuickSort algorithm uses the partitioning and comparison operations to arrange
the elements of a list in the correct order.

So far, the main shortcoming of the QuickSort algorithm might appear to be the additional
memory required by the creation of separate smaller lists. However, creating separate lists is
not necessary. Using a slightly modified technique, the array can be partitioned in place, as
shown in the following code listing:

static int Partition (int[] numbers, int left,

 int right, int pivotIndex)

Table 3-4

Visualizing QuickSort STEP DATA TO BE SORTED COMMENTS

1 50, 10, 30, 20, 40 Start with an unsorted list and pick a pivot
element—in this case 30.

2 20, 10 30 50, 40 Partition the list, with items less than
the pivot going to the left list and items
greater than the pivot going to the right
list. Then, to sort the left list, pick a pivot
(here, 10). Similarly, to sort the right list,
pick a pivot (here, 40) for that list.

3 - 10 20 30 - 40 50 In the left list, 20 is greater than 10, and
in the right list, 50 is greater than 40;
therefore, both 20 and 50 go into the right
list. This yields lists of only one number,
which are all by definition sorted.

4 10, 20, 30, 40, 50 All the small sorted lists are merged to
create the final complete sorted list.

c03Understanding General Softwar79 Page 79 2/26/11 11:42:18 AM f-392c03Understanding General Softwar79 Page 79 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

80 | Lesson 3

{

 int pivotValue = numbers[pivotIndex];

 // move pivot element to the end

 int temp = numbers[right];

 numbers[right] = numbers[pivotIndex];

 numbers[pivotIndex] = temp;

 // newPivot stores the index of the first

 // number bigger than pivot

 int newPivot = left;

 for (int i = left; i < right; i��)

 {

 if (numbers[i] <= pivotValue)

 {

 temp = numbers[newPivot];

 numbers[newPivot] = numbers[i];

 numbers[i] = temp;

 newPivot��;

 }

 }

 //move pivot element to its sorted position

 temp = numbers[right];

 numbers[right] = numbers[newPivot];

 numbers[newPivot] = temp;

 return newPivot;

}

With this technique, first the pivot element is moved to the end of the array. Then, all the
elements less than or equal to the pivot element are moved to the front of the array. Finally,
the pivot element is placed just before the element greater than itself, effectively partitioning
the array.

This partitioning algorithm can then be used by QuickSort to partition the list, reduce the
problem to smaller problems, and recursively solve it:

static int[] QuickSort(int[] numbers,

 int left, int right)

{

 if (right > left)

 {

 int pivotIndex = left � (right � left) / 2;

 //partition the array

 pivotIndex = Partition(

 numbers, left, right, pivotIndex);

 //sort the left partition

 QuickSort(

c03Understanding General Softwar80 Page 80 2/26/11 11:42:18 AM f-392c03Understanding General Softwar80 Page 80 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding General Software Development | 81

 numbers, left, pivotIndex � 1);

 // sort the right partition

 QuickSort(

 numbers, pivotIndex � 1, right);

 }

 return numbers;

}

Because of its partitioning approach, the QuickSort algorithm is much faster than the
BubbleSort algorithm.

CERTIFICATION READY
Do you understand
common sorting
algorithms?
3.3

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• Application lifecycle management (ALM) refers to the various activities that revolve around
a new software product from its inception to the time when it matures and perhaps retires.

• Software testing is the process of verifying software against its requirements. Testing takes
place after most developmental work is complete.

• Data structures are techniques for organizing and storing data in computer memory. How
the data is stored affects how it is retrieved and manipulated. Understanding a data
 structure involves understanding not only the storage pattern, but also the methods used
to create, access, and manipulate the structure.

• An array is a collection of items of the same data type that are stored in a contiguous
memory location and addressed using one or more indices.

• A queue is a collection of items in which the first item added to the collection is the first
one to be removed.

• A stack is a collection of items in which the last item added to the collection is the first one
to be removed.

• A linked list is a collection of nodes arranged in such a way that each node contains a link
to the next node in the sequence.

• The BubbleSort algorithm uses a series of comparison and swap operations to arrange the
elements of a list in the correct order.

• The QuickSort algorithm uses partitioning and comparison operations to arrange the
 elements of a list in the correct order.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. In ______ testing, testers use their knowledge of system internals to assess the system.

 2. Usually, with every new fix, software testers run a battery of ______ to make sure that
all functionality that was known to be working is still working.

 3. The BubbleSort algorithm uses a series of ______ and ______ operations to arrange the
elements of a list in the correct order.

■ Knowledge Assessment

c03Understanding General Softwar81 Page 81 2/26/11 11:42:18 AM f-392c03Understanding General Softwar81 Page 81 2/26/11 11:42:18 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

82 | Lesson 3

 4. A(n) ______ is a collection of items in which the last item added to the collection is the
first one to be removed.

 5. ______ is the process of determining the detailed business requirements for a new
 software system.

 6. A linked list is a collection of nodes such that each node contains a(n) ____ to the next
node in the sequence.

 7. The ______ operation adds an item to a queue, whereas the ______ operation removes
an item from a queue.

 8. The QuickSort algorithm uses ______ and comparison operations to arrange the
 elements of a list in the correct order.

 9. A(n) ______ is responsible for analyzing business needs and converting them into
requirements that can be executed by the development team.

 10. Alpha testing and beta testing both are part of the ______ testing of a system.

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. The product that you are developing is not yet finished, but you would like to release
the product to a wider customer audience for feedback and testing. Under which of the
following testing levels would this activity fall?
a. Integration testing
b. System testing
c. Acceptance testing
d. Regression testing

 2. The testers of a software application have access to its source code, and they plan to write
test cases that ensure that the methods return correct values. Which of the following
 testing levels will this activity fall under?
a. Integration testing
b. Unit testing
c. Alpha testing
d. Beta testing

 3. Which of the following data structures allows direct access to all of its items?
a. Array
b. Stack
c. Queue
d. Linked list

 4. Which of the following activities in the application lifecycle is used by an architect to
create the technical blueprint of a system?
a. Requirements analysis
b. Design
c. Development
d. Maintenance

 5. In your application, you are using a queue data structure to manipulate information.
You need to find which data item will be processed next, but you don’t want to actu-
ally process that data item yet. Which of the following queue operations will you use?
a. Enqueue
b. Dequeue
c. Peek
d. Contains

c03Understanding General Softwar82 Page 82 2/26/11 11:42:19 AM f-392c03Understanding General Softwar82 Page 82 2/26/11 11:42:19 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Introduction to Object-Oriented Programming | 83

 6. You are developing a program that requires you to track the method calls. You can
only invoke one method at a time. However, a method call may in turn invoke other
 methods. When a method ends, it returns control back to the calling method. Which
data structure should you use to keep track of these method calls?
a. Queue
b. Array
c. Linked list
d. Stack

 7. You are developing a program that simulates a job processor. Often, the jobs come
faster than you can process them, and in such cases, the jobs wait for their turn
to be processed. You need to make sure that the job that arrived first is the first to
be processed as well. Which of the following data structures is best suited for this
requirement?
a. Array
b. Queue
c. Linked list
d. Stack

 8. You write the following code in a program:

 int[] numbers = {2, 3, 1, 4};

 numbers [2] = 4;

 What will be the contents of the array after the second statement is executed?
a. {2, 4, 1, 4}
b. {2, 3, 4, 4}
c. {2, 4, 1, 2}
d. {4, 3, 1, 4}

 9. You are developing a program that performs frequent insert and delete operations on the
data. Your requirement also dictates the capability to access previous and next records
when the user presses the previous or next button. Which of the following data struc-
tures will best suit your requirements?
a. Array
b. Circular linked list
c. Linked list
d. Doubly linked list

 10. You are developing a program that performs frequent insert and delete operations on
the data. The data items need to be accessed like a stack with last-in, first-out func-
tionality. Your solution must require as little memory as possible. Which of the fol-
lowing data structures will best suit these requirements?
a. Array
b. Circular linked list
c. Linked list
d. Doubly linked list

■ Competency Assessment

Scenario 3-1: Using Arrays

You are writing a program that uses a two-dimensional array. The array has four rows and
five columns. You need to print the largest element in each row of the array. How would you
write such a program?

c03Understanding General Softwar83 Page 83 2/26/11 11:42:19 AM f-392c03Understanding General Softwar83 Page 83 2/26/11 11:42:19 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

84 | Lesson 3

■ Proficiency Assessment

Scenario 3-3: Using Stacks

You are writing a program that uses two stacks. The data in each stack is already in descend-
ing order. You need to process the contents of both stacks in such a way that the output is
printed on the screen in ascending order. How would you write such a program?

Scenario 3-4: Using Linked Lists

You are writing a program that stores a list of product names in a linked list. The user will
enter a product name, and your program needs to check whether the linked list contains the
given product. How would you write such a program?

Scenario 3-2: Using Queues

You are writing a program that uses two queues. The data in each queue is already in
 ascending order. You need to process the contents of both queues in such a way that the
 output is printed on the screen in sorted order. How would you write such a program?

c03Understanding General Softwar84 Page 84 2/26/11 11:42:19 AM f-392c03Understanding General Softwar84 Page 84 2/26/11 11:42:19 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

85

Understanding Web
Applications

You are a software developer for a large business organization. You need to develop
an application that can be used over a network such as the World Wide Web. The
 application will be deployed on a Windows Web server, but the application’s users will
use multiple operating systems and Web browsers.

■ Understanding Web Page Development

THE BOTTOM LINE

A Web page is a document that is served over the World Wide Web (WWW) and can
be displayed by a Web browser. Web pages are developed using the Hypertext Markup
Language (HTML) and are stored on a Web server. Web browsers download the requested
HTML from the Web server and render it on the user’s screen.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Web Page Development Understand Web page 4.1
 development.

Understanding ASP.NET Application Understand Microsoft ASP.NET 4.2
Development Web application development.

Understanding IIS Web Hosting Understand Web hosting. 4.3

Understanding Web Services Understand Web services. 4.4
Development

LESSON 4

K E Y T E R M S

cascading style sheets (CSS)

client-side programming

client-side state management

Hypertext Markup
 Language (HTML)

Internet Information
 Services (IIS)

JavaScript

Simple Object Access
 Protocol (SOAP)

server-side programming

server-side state
 management

state management

virtual directory

Web hosting

Web services

Web service description
language (WSDL)

Web site

c04Understanding Web Application85 Page 85 2/26/11 11:47:32 AM f-392c04Understanding Web Application85 Page 85 2/26/11 11:47:32 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

86 | Lesson 4

The World Wide Web (also known as WWW or “the Web”) is a system of interconnected
hypertext documents and other resources (such as images and video) that can be accessed via
the Internet. Multiple technologies work together to make the WWW possible. In this section,
we will discuss two of these technologies:

• Hypertext Transfer Protocol (HTTP)

• Hypertext Markup Language (HTML)

HTTP is the underlying communication protocol used by the World Wide Web. HTTP provides
the common language that Web servers and Web browsers use in order to communicate.

HTTP uses a Uniform Resource Locator (URL) to uniquely identify and address each resource
on the Internet. A URL is essentially a Web address and looks like this: http://www.microsoft
.com/en/us/default.aspx. Each URL starts with a protocol. In this example, the protocol is
HTTP. You may also notice the HTTPS (secure HTTP) protocol in use for secure applications
in which data needs to be encrypted before it is transmitted over the network. After the
protocol, the next part of a URL is the address of the Web server (here, www.microsoft.com),
followed by the location of the resource within the Web server (/en/us/), and finally, the
requested resource itself (default.aspx). All documents, images, videos, and other resources on
the Web are identified by a URL.

When a browser sends an HTTP request for a Web page to a Web server (both the Web page
and the server are identified by a URL), the server prepares an HTTP response for the browser.
This response specifies the content and layout of the Web page.

TAKE NOTE*

The terms “Internet” and “the Web” are often used interchangeably, but they are actually
distinct and should not be confused. The Internet is a global data communications system
that provides connectivity among computers. In contrast, the Web is one of several services
available on the Internet that allows users to access hyperlinked resources.

The language that the Web server and Web browser use to describe a Web page is Hypertext
Markup Language (HTML). HTML is a text-based language that uses various markup tags
that describe how content is displayed. HTML allows images, videos, and other objects to be
referenced in a file to create multimedia Web pages. HTML can also embed scripts (such as
JavaScript) that affect the behavior of Web pages, and it can be used to include cascading style
sheets (CSS) to define the formatting and layout of a page’s content. The Web browser reads
the HTML code and renders the results on the screen.

A Web page may contain hyperlinks to other resources, such as images and videos. Each of
these resources is identified by its own URL. Thus, in order to render a page completely, the
browser will make additional HTTP requests to get these resources and display them as part
of the Web page.

In the following sections, you’ll learn more about the various components that make up a
Web page, including HTML, CSS, and JavaScript.

Understanding HTML

Hypertext Markup Language (HTML) is the language used by Web servers and browsers to
describe a Web page.

The purpose of HTML is to provide a standard language for describing Web pages so that
different Web browsers can understand this language and display the corresponding page.
HTML is a text-based language, which means that you can write and edit HTML pages using

c04Understanding Web Application86 Page 86 2/26/11 11:47:32 AM f-392c04Understanding Web Application86 Page 86 2/26/11 11:47:32 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 87

any text editor. When HTML is sent to a Web browser, the complete text of the page is sent.
In fact, most browsers allow you to view the HTML source code for a Web page.

HTML consists of a set of tags (also called as HTML elements) that define the structure and
content of a page. For example, the <html> tag specifies the beginning of an HTML document.
HTML tags are always surrounded by angle brackets and always used in pairs. In particular,
each starting tag has a matching ending tag. Ending tags contain a forward slash to indicate
that they are such. For example, the ending tag for <html> is </html>.

An HTML page has two distinct parts: a header and a body. The header is enclosed within
the <head> and </head> tags and is used to provide a document title and links to external items
that may be used in the page, such as CSS files and JavaScript files. The body is enclosed
within the <body> and </body> tags, and it is used to provide the complete structure and
content of the page that will be displayed within a Web browser.

Here is an example of an HTML tag that displays an image:

<img height="400px" width="400px"

alt="Mimas Cassini" src=

"http://upload.wikimedia.org/wikipedia/commons/b/bc/Mimas_Cassini.jpg"/>

Notice that the tag specifies additional attributes. For example, the src attribute
specifies the location of the image file, and the height and the width attributes specify what
dimensions to use when rendering the image in a browser.

Now, consider another example of an HTML tag:

Saturn’s moon

Here, <a> is the anchor tag, which is used to create hyperlinks on a Web page. The href
 attribute associated with this tag specifies the target URL, and the text within the anchor tag
is that which is displayed as a link.

HTML is text-based when
it comes to writing the
code. HTML provides
tags to embed pictures,
audio, video, and many
other types of multimedia
and interactive content on
a Web page.

TAKE NOTE*

In this example, note that
the HTML document
does not contain the
image itself. Rather, the
 tag specifies the
URL of the image, which
the browser downloads
separately and renders as
part of the page.

TAKE NOTE*

This lesson does not cover all HTML elements. To learn more about these elements, search
for “HTML elements” on the MSDN.

TAKE NOTE*

The following exercise demonstrates the steps involved in creating an HTML document.

WORK WITH HTML

GET READY. To create an HTML document, perform these actions:

 1. Open Visual Studio. Create a new project based on the ASP.NET Empty Web
Application template. Name the project WorkingWithHTML and name the solution
Lesson04.

 2. Select Project > Add New Item, then select the HTML Page template. Name the file
default.htm.

 3. Replace the default code in the HTML file with the following:

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Saturn's Moon</title>

</head>

c04Understanding Web Application87 Page 87 2/26/11 11:47:32 AM f-392c04Understanding Web Application87 Page 87 2/26/11 11:47:32 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

88 | Lesson 4

<body>
<h1>Mimas Cassini</h1>
The img tag is used to display the picture of a

 Saturn’s moon:

<img height="400px" width="400px"
 alt="Mimas Cassini"
 src="http://goo.gl/3BeK"/>
</body>
</html>

 4. Select Debug > Start Debugging (or press F5). The default.htm page will open in
a Web browser. The output should look similar to Figure 4-1, where you can see the
 and <a> tags in action.

CSS is a language that describes information about displaying a Web page. When rendering
Web pages in a browser, HTML specifies what will be displayed, and the cascading style
sheets (CSS) specify how that material will be displayed. For example, HTML can specify
that your document has a H1 heading with a given text, and CSS can specify the font and
color that will be applied to that heading.

CSS enables you to separate the layout of a Web page from its content. This separation allows
you to change one without affecting the other. Mixing content and style together reduces

Understanding Cascading Style Sheets

Cascading style sheets (CSS) enable you to store a Web page’s style and formatting informa-
tion separate from the HTML code. This separation makes it easier to update the look and
feel of your Web site. Visual Studio includes tools to build and preview your style sheets.

Figure 4-1

A simple HTML page that con-
tains an image and hyperlink

c04Understanding Web Application88 Page 88 2/26/11 11:47:33 AM f-392c04Understanding Web Application88 Page 88 2/26/11 11:47:33 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 89

the maintainability of a Web site. For example, say you want to change the color and font
of all H1 headings on your Web site. One approach may be to open an HTML editor and
modify each file on the Web site that uses the H1 tag. This might be an acceptable solution if
the Web site has just one or two pages, but what if the site has a large number of pages—for
example, 50 or 100? Imagine manually changing each page! If such changes are requested
often, the Web development process will be boring and error prone. After all, how can you
ensure that you did not miss any H1 tags?

Fortunately, with CSS, you can put all such styling information in a separate file and connect
that file to all pages on a Web site. Then, once the CSS file is set up, you can modify any
style (such as the color and font of H1 headings) simply by changing the style in the CSS
file—and this single change will affect all pages on the Web site.

DESIGNING CASCADING STYLE SHEETS
The CSS language is text-based and easy to read and understand. The following is an example
of an HTML page that defines CSS styles:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Understanding CSS</title>
 <style type="text/css">
 body
 {
 font-family: Verdana;
 font-size: 9pt;
 }
 div
 {
 color:Red;
 }
 .block
 {
 background-color: Yellow;
 border-color: Blue;
 border-width: thin;
 border-style: outset;
 font-family: Arial;
 }
 </style>
</head>
<body>
 Sample body text

 <div>Sample DIV text</div>
 <div class="block">Sample DIV text
 with block class</div>
 Sample SPAN text
 with block class
</body>

</html>

When used effectively,
CSS is a great tool for
increasing site-wide
consistency and
maintainability.

TAKE NOTE*

c04Understanding Web Application89 Page 89 2/26/11 11:47:37 AM f-392c04Understanding Web Application89 Page 89 2/26/11 11:47:37 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

90 | Lesson 4

Note that the CSS definitions must be inside the <style> element and are defined under
the <head> element. This particular CSS defines two element styles and a class style. The
first style applies to the HTML body element and specifies that all text in the body element
should use the Verdana font with 9-point font size. The second element style specifies that
the text within the DIV element should be written in red. Finally, a class named “block” is
defined. CSS class definitions are prefixed with a dot (“.”). The contents of any HTML element
that uses this class will be displayed with yellow background and a border. When you display
this particular page in a browser, it should appear as shown in Figure 4-2.

Figure 4-2

Formatting HTML with cascad-
ing style sheets

In the figure, notice that the highlighted text is displayed as a result of the block class.
However, the block CSS class does not specify the color of the text. In the first line of high-
lighted text, the block class is applied to the DIV element; in the second line of highlighted
text, the block class is applied to the SPAN element. In the first case, because the block class is
applied to a DIV text, the color style of the DIV element is carried over in the final rendering.

In the previous example, the CSS file was written inside the HTML file. A more useful
approach is to write the CSS in its own separate file and then link the HTML file to this
CSS file. You will learn how to do so in the following exercise.

WORK WITH CSS FILES

GET READY. To write a CSS file and link it to an HTML file, perform these steps:

 1. Add a new project based on the ASP.NET Empty Web Application template to the
Lesson04 solution. Name the project UnderstandingCSS.

 2. Select Project > Add New Item. Select the Style Sheet template. Name the file
styles.css. Replace the default code in the file with the following:

body

{

 font-family: Verdana;

 font-size: 9pt;

}

div

{

 color:Red;

}

c04Understanding Web Application90 Page 90 2/26/11 11:47:37 AM f-392c04Understanding Web Application90 Page 90 2/26/11 11:47:37 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 91

.block

{

 background-color: Yellow;

 border-color: Blue;

 border-width: thin;

 border-style: outset;

 font-family: Arial;

}

 3. Select Project > Add New Item, then select the HTML Page template. Name the file
default.htm. Replace the default code in the file with the following:

<!DOCTYPE html PUBLIC

"–//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1–
 transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <link rel="STYLESHEET"

 type="text/css" href="styles.css" />

 <title>Understanding CSS</title>

</head>

<body>

 Sample body text

 <div>Sample DIV text</div>

 <div class="block">Sample DIV text

 with block class</div>

 Sample SPAN text

 with block class

</body>

</html>

 4. Select Debug > Start Debugging (or press F5). The default.htm page will open in a
Web browser, and the output should be similar to Figure 4-2 (presented earlier).

As shown in the example exercise, the HTML <link> element is used to link a CSS file with
an HTML page:

<link rel="STYLESHEET"

 type="text/css" href="styles.css" />

The <link> element is always put within the <head> element, and the href attribute specifies
the address of the CSS file to use. To link multiple pages with the same CSS file, you’ll need
to put the <link> element within each HTML page.

Visual Studio includes a built-in style designer that can help you design new CSS styles or
modify existing styles. When you open a .css file, you’ll see a new menu named Styles. From
this menu, you can create a new style by selecting Styles > Add Style Rule. You can also modify
the currently selected style by selecting the Styles > Build Style option. This option opens the
Modify Style dialog box, as shown in Figure 4-3.

When CSS are stored in
separate files, the user’s
browser will download
and store these files
locally. Therefore, they
can be used on multiple
pages without any need
to download them again.
This reduces unneces-
sary data transfer.

TAKE NOTE*

c04Understanding Web Application91 Page 91 2/26/11 11:47:38 AM f-392c04Understanding Web Application91 Page 91 2/26/11 11:47:38 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

92 | Lesson 4

JavaScript is used to make Web sites more responsive and Web pages more interactive.
JavaScript accomplishes this by executing the code on the client side (the Web browser) and
by minimizing unnecessary round-trips to and from the Web server. Let’s take an example
in which a user needs to enter personal details on a Web page, such as name, email address,
and phone number. A common requirement is to perform data validation to ensure that
the input fields are not empty and the user’s email address and phone number have been
provided in the required form. Without JavaScript, you would need to submit the form to
the server, which will perform data validation and return the results to the client. This trans-
mission of information takes time and degrades the user experience. However, a JavaScript
solution can perform this type of data validation from within the browser, providing a better
user experience.

As previously mentioned, JavaScript code executes locally within the Web browser (the
 client), as opposed to on the Web server. Therefore, JavaScript is sometimes also called a
 client-side scripting language, and programming with JavaScript is referred to as client-side
programming.

The runtime behavior of client-side code execution depends on the browser that executes
it. However, this behavior is independent of server technology or programming framework.
Thus, for JavaScript that is being executed in a Web browser, it does not matter whether
the Web page was generated by ASP.NET or PHP or whether the page is being served by a
Windows Web server or a Linux Web server.

JavaScript and the C# programming language both use a syntax influenced by the C pro-
gramming language. Still, JavaScript and C# are very different in how they are executed. In
particular, JavaScript is executed by the Web browser, and JavaScript code is interpreted rather
than compiled, as in the case of C#.

Figure 4-3

The Modify Style dialog box

Understanding JavaScript

JavaScript is a client-side scripting language that runs inside Web browsers to help cre-
ate far more interactive Web pages than are possible with only HTML. JavaScript is used
in millions of Web pages and is supported by all modern Web browsers.

c04Understanding Web Application92 Page 92 2/26/11 11:47:39 AM f-392c04Understanding Web Application92 Page 92 2/26/11 11:47:39 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 93

All JavaScript code must be placed inside the <script> element. The <script> element is usually
placed inside the <head> element, although this is not required. Multiple <script> elements
may exist within a single page. To see JavaScript in action, try the following exercise.

WORK WITH JAVASCRIPT

GET READY. To begin working with JavaScript, perform the following tasks:

 1. Add a new project based on the ASP.NET Empty Web Application template to the
Lesson04 solution. Name the project UnderstandingJavaScript.

 2. Select Project > Add New Item, then select the HTML Page template. Name the file
default.htm. Replace the default code in the file with the following:

<!DOCTYPE html PUBLIC

"–//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1–
 transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Understanding JavaScript</title>

 <script type="text/javascript"

 language="javascript">

 username = prompt("Please enter your name");

 message = "Hello, " � username �

 ". Your name has ";

 nameLen = username.length;

 if (nameLen > 5)

 message = message � "more than ";

 else if (nameLen < 5)

 message = message � "less than ";

 else

 message = message � "exactly ";

 message = message � "5 characters.";

 alert(message);

 </script>

</head>

<body>

</body>

</html>

Many modern Web sites provide a highly interactive experience rivaling that of desktop
applications. Such sites can be developed using Ajax programming. Ajax is shorthand for
“Asynchronous JavaScript and XML.” Ajax uses JavaScript extensively in order to provide
responsive Web applications. The ASP.NET AJAX framework lets you implement Ajax
functionality on ASP.NET Web pages.

TAKE NOTE*

c04Understanding Web Application93 Page 93 2/26/11 11:47:41 AM f-392c04Understanding Web Application93 Page 93 2/26/11 11:47:41 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

94 | Lesson 4

 3. Select Debug > Start Debugging (or press F5). The default.htm page will open in a
Web browser. Notice that the JavaScript code prompts you to enter your name. Once
you have done so, a dialog box displays a message based on the length of your name,
as shown in Figures 4-4 and 4-5.

Figure 4-4

JavaScript user prompt

As with CSS files, you can also put your JavaScript code in a separate file and link this file
with an HTML file by using the script element, as shown below:

<script src="SampleScript.js">

</script>

Here, the SampleScript.js file contains all the JavaScript code, and the script element links to
this file by using the src attribute. Storing JavaScript in external files offers many advantages:

• Improved maintainability: If you use the same JavaScript code on each page of a Web
site, you can store the code on a central page rather than repeating it on every page. This
way, when it’s time to modify the JavaScript code, you’ll have to change the code in only
one place.

• Improved performance: Storing JavaScript code in a separate file reduces the size of a
Web page. Also, browsers can download and cache the external JavaScript file so that it
is not downloaded again unless it is modified.

Visual Studio includes full IntelliSense support for JavaScript code. Even ASP.NET controls,
like the TreeView control or the validation controls, use JavaScript where possible to render
content dynamically.

Figure 4-5

JavaScript dialog box

Although all mod-
ern browsers support
JavaScript, they can be
set so that JavaScript is
turned off. You can use
a <noscript> element to
display a specific message
to users who opt not to
run JavaScript.

TAKE NOTE*

Understanding Client-Side vs. Server-Side Programming

Whether a program is client-side or server-side depends on where the program is ultimately
executed.

Client-side programming refers to programs that execute completely on a user’s local computer.
Examples of client-side programs include the Windows Forms application and JavaScript code
that executes within a Web browser. Client-side programs do not consume server resources.

On the other hand, server-side programming refers to programs that are executed completely
on a server and make use of the server’s computational resources. Here, the only client
resources that are used are those involved in actually retrieving the processing results from the

c04Understanding Web Application94 Page 94 2/26/11 11:47:41 AM f-392c04Understanding Web Application94 Page 94 2/26/11 11:47:41 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 95

server. Web applications and Web services are examples of server-side programming. This type
of programming uses a server-side technology such as ASP.NET, PHP, or Ruby on Rails.

Recently, hybrid applications that use both client- and server-side programming have become
increasingly popular. For instance, you can design smart-client applications that run locally
on client computers but make use of Web services to accomplish certain tasks. In fact, Ajax
applications use a mix of server-side programming and client-side code to create interactive
and highly responsive Web applications.

ASP.NET allows you to create applications that completely execute on the server or hybrid
Ajax applications that provide fast, responsive interfaces while storing most of their data on
the Web.

CERTIFICATION READY
Do you understand how
to use HTML, JavaScript,
and CSS for Web page
development?
4.1

■ Understanding ASP.NET Application Development

ASP.NET is the part of the .NET Framework that enables you to develop programmable
Web forms and Web services. As with any .NET Framework application, you can develop
ASP.NET applications in any language that is compatible with the .NET common
language runtime, including Visual Basic and C#.

THE BOTTOM LINE

The ASP.NET infrastructure has two main parts:

• A set of classes and interfaces that enables communication between the Web browser and
Web server. These classes are organized in the System.Web namespace.

• A runtime process, also known as the ASP.NET worker process (aspnet_wp.exe), that
handles the Web request for ASP.NET resources.

At a higher level, an ASP.NET Web application is executed through a series of HTTP
requests and response messages between the client browser and the Web server. This process
occurs as follows:

 1. The user requests a resource from a Web server by typing a URL in the Web browser.
The browser sends an HTTP request to the destination Web server.

 2. The Web server analyzes the HTTP request and searches for a process capable of
 executing the request.

 3. The result of the HTTP request is returned to the client browser in the form of an
HTTP response.

 4. The browser reads the HTTP response and renders it as a Web page to the user.

This process is represented in Figure 4-6.

Figure 4-6

Communication between a
client and a Web server HTTP Request

HTTP Response

c04Understanding Web Application95 Page 95 2/26/11 11:47:44 AM f-392c04Understanding Web Application95 Page 95 2/26/11 11:47:44 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

96 | Lesson 4

As a developer, you should know what happens behind the scenes when a Web server executes
a request for an ASP.NET page. The following steps describe this process:

 1. When the Internet Information Service (IIS) receives an HTTP request, it uses the file-
name extension to determine which Internet Server Application Programming Interface
(ISAPI) program to run to process the request. When the request is for an ASP.NET
page, it passes the request to the ISAPI DLL capable of handling requests for ASP.NET
pages, which is aspnet_isapi.dll.

 2. The aspnet_isapi.dll process passes the request to the ASP.NET worker process (aspnet_
wp.exe), which fulfills the request.

 3. The ASP.NET worker process compiles the .aspx file into an assembly and instructs the
Common Language Runtime (CLR) to execute the assembly.

 4. When the assembly executes, it takes the services of various classes in the .NET
Framework class library to accomplish its work and generate response messages for the
requesting client.

 5. The ASP.NET worker process collects the responses generated by the execution of the
Web page, creates a response packet, and passes it to the aspnet_isapi.dll process.

 6. Aspnet_isapi.dll forwards the response packet to IIS, which in turn passes the response to
the requesting client machine.

Prior to execution, each ASP.NET page is converted into a class. This class derives most of its
functionality from the System.Web.UI.Page class. The Page class provides several important
properties, such as Request, Response, Session, and Server.

The Page class provides several important methods and properties that control how a page
request is processed. For the complete list of methods and properties, visit http://msdn.
microsoft.com/en-us/library/system.web.ui.page.aspx.

TAKE NOTE*

Understanding ASP.NET Page Life Cycle and Event Model

During its execution, an ASP.NET page passes through many distinct stages of process-
ing. Each of these stages itself goes through specific processing steps, such as initializa-
tion, loading, running event-handler code, and rendering.

As a page executes, it goes through various stages of processing. The page also fires a few
events to which you can attach an event handler in order to execute custom code at different
stages of page processing. In fact, ASP.NET developers must have a good understanding of
the page life cycle so that they can write code that is executed at exactly the desired stage of
page processing.

Table 4.1 lists the different life cycle stages and their associated events.

In a typical contact form, you enter information and press a submit button. When you
submit this page, the page can process the submitted data to take some action, such as
storing the information in a database or sending an email. In many cases, the initial page
is displayed again with a confirmation of the form submission. A postback occurs when the
information is posted to the same Web page for processing. A postback is different from
the initial load of the page because the page receives additional information (such as form
data) as part of the postback.

TAKE NOTE*

c04Understanding Web Application96 Page 96 2/26/11 11:47:47 AM f-392c04Understanding Web Application96 Page 96 2/26/11 11:47:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 97

When you want to handle an event, you must write code that registers a method to handle
the event (also called as event handler) with the event. This is usually done using the common
event registration pattern employed throughout the .NET Framework:

object.event �= new EventHandler(eventhandler);

Here, replace object with the name of the object that exposes the event, event with the name
of the event, and eventhandler with the name of the method that handles the event.

Note, however, that ASP.NET provides six special methods that are recognized as event han-
dlers by default and do not need the above registration code. These are the specially named
methods Page_Init, Page_Load, Page_DataBind, Page_PreRender, and Page_Unload. These
methods are treated as event handlers for the corresponding events exposed by the Page class.
This automatic event wiring is controlled by the AutoEventWireup attribute of the @Page
directive. By default, the value of this attribute is true, meaning that these specially named
methods are automatically wired up with their corresponding events.

Table 4-1

Important stages in the ASP.NET page life cycle

STAGE MEANING ASSOCIATED EVENTS

Page request When a request for a page is received, the page life cycle begins.
 At this point, ASP.NET decides whether the page can be readily
 served from the cache or whether it needs to be parsed and
 compiled.

Start The start stage involves determining whether the request is a PreInit
 postback or a new request. Several page properties, such as
 Request, Response, IsPostBack, and UICulture, are set at this stage.

Initialization During the initialization stage, all the controls on the page are Init
 initialized and made available. An event handler for the Init event
 is the best place for code that you want to be executed prior to
 further page processing.

Load If the request is a postback, the load stage is used to restore Load
 control properties with information from view state and control
 state. A method that handles the Load event is the best place to
 store initialization code for any controls specific to this page.

Postback event handling If the request is a postback, the control event handlers are called
 during this stage. Then, the input values are validated and the
 IsValid property for the Page class is set.

Prerendering This stage signals that the page is just about to render its contents. PreRender
 An event handler for the PreRender event is the last chance to
 modify the page’s output before it is sent to the client.

Rendering At this stage, the page calls the Render method for each control
 and populates the response that will be sent to the Web browser.

Unload During the unload stage, the response is sent to the client and Unload
 page cleanup is performed. As part of this cleanup, page properties
 such as Request and Response are discarded.

c04Understanding Web Application97 Page 97 2/26/11 11:47:47 AM f-392c04Understanding Web Application97 Page 97 2/26/11 11:47:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

98 | Lesson 4

UNDERSTAND THE ASP.NET PAGE LIFE CYCLE

GET READY. To see how different events of the Page class are executed, perform the following
actions:

 1. Create a new project based on the ASP.NET Empty Web Application template to the
Lesson04 solution. Name the project PageEvents.

 2. Select Project > Add New Item. Select the Web Form template. Name the file
WebForm1.aspx.

 3. In the HTML markup for the page (WebForm1.aspx), make sure that the
AutoEventWireup attribute for the @Page directive is set to true:

<%@ Page Language="C#" AutoEventWireup="true"

CodeBehind="WebForm1.aspx.cs"

Inherits="PageEvents.WebForm1" %>

 4. Right-click in the code window and select View Code from the shortcut menu to
switch to the code view. Replace the code in the code-behind file (WebForm1.aspx.cs)
with the following:

using System;
namespace PageEvents
{
 public partial class WebForm1
 : System.Web.UI.Page
 {
 protected void Page_Load
 (object sender, EventArgs e)
 {
 Response.Write
 ("Message from Page_Load.
");
 }
 protected void Page_Init
 (object sender, EventArgs e)
 {
 Response.Write
 ("Message from Page_Init.
");
 }
 protected void Page_PreRender
 (object sender, EventArgs e)
 {
 Response.Write
 ("Message from Page_PreRender.
");
 }
 protected void Page_PreInit
 (object sender, EventArgs e)
 {
 Response.Write
 ("Message from Page_PreInit.
");
 }
 }

}

c04Understanding Web Application98 Page 98 2/26/11 11:47:47 AM f-392c04Understanding Web Application98 Page 98 2/26/11 11:47:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 99

 5. Select Debug > Start Debugging (or press F5). The default.htm page will open in a
Web browser, as shown in Figure 4-7.

In the example exercise, note that the characters <% and %> are used to embed code blocks
in the HTML markup of a page. The code inside these embedded blocks is executed during
the page’s rendering stage. Within the embedded code blocks, the syntax <%=expression> is
used to resolve an expression and return its value into the block. For example, consider the
following block of code:

<i><% = DateTime.Now.ToShortDateString() %></i>

When executed, this code will display the current date in italicized format:

12/01/2010

The @Page directive specifies various attributes that control how ASP.NET will render a
page. For example, in this exercise, attributes of the @Page directive specify the following:

• C# is the programming language for this Web page (Language="C#")

• The page’s events are auto-wired (AutoEventWireup=true)

• The name of the code file that contains the class associated with the page
(CodeBehind="WebForm1.aspx.cs")

• The class name for the page to inherit (Inherits="PageEvents.WebForm1")

Understanding State Management

State management is an important issue for Web applications because of the discon-
nected nature of HTTP. There are both client-side and server-side techniques available
for state management.

State management is the process of maintaining state for a Web page across round-trips. The
values of the variables and controls collectively make up the state of a Web page.

ASP.NET provides several techniques for preserving state information across page postbacks.
These techniques can be broadly categorized as either client-side or server-side, depending on
where the resources are consumed.

Figure 4-7

Web form displaying the order
of event execution for an
ASP.NET page

c04Understanding Web Application99 Page 99 2/26/11 11:47:47 AM f-392c04Understanding Web Application99 Page 99 2/26/11 11:47:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

100 | Lesson 4

INTRODUCING CLIENT-SIDE STATE MANAGEMENT
Client-side state management use HTML code and the capabilities of the Web browser to
store state information on the client computer. The following techniques are used for storing
state information on the client side:

• Query strings: Here, state is maintained by putting the data as a set of key-value
pairs in the query string portion of a page URL. For example, the following URL
embeds a query string key (q) and value (television) pair: http://www.bing.com/
search?q=television. To retrieve the value of the key in an ASP.NET page, use the
 expression Request.QueryString[“q”]. QueryString is a property of the Request object,
and it gets the collection of all the query-string variables.

• Cookies: Cookies are small packets of information that are stored by a Web browser
locally on the user’s computer. Cookies are commonly employed to store user preferences
and shopping cart contents and to give users a personalized browsing experience on
subsequent visits to a Web page. The HttpCookie class represents a cookie in your code.
The following code shows how to set a cookie on a client computer:

 HttpCookie cookie =

 new HttpCookie("Name", "Bob");

 cookie.Expires = DateTime.Now.AddMinutes(10);

 Response.Cookies.Add(cookie);

Similarly, the following piece of code shows how to read a cookie:

 if (Request.Cookies["Name"] != null)

 {

 name = Request.Cookies["Name"].Value;

 }

• Hidden fields: Hidden fields contain information that is not displayed on a Web
page but is still part of the page’s HTML code. Hidden fields can be created by using
the <input type=“hidden”> HTML element. The ASP.NET HTML Server control
HtmlInputHidden also maps to this HTML element.

• ViewState: ViewState is the mechanism ASP.NET uses to maintain the state of controls
across page postbacks. To facilitate this, when ASP.NET executes a page, it collects
the values of all nonpostback controls that are modified in the code and formats them
into a single encoded string. This string is stored in a hidden field in a control named
__VIEWSTATE. By default, ViewState is enabled in an ASP.NET application. You can
disable ViewState at the level of a control by setting the EnableViewState property of the
control to false:

 <asp:GridView ID="GridView1"

 runat="server" EnableViewState="false" />

In addition, you can disable ViewState at the page level by setting the EnableViewState
attribute of the Page directive to false:

 <%@ Page EnableViewState="false" %>

Finally, you can disable ViewState at the application level by adding the following line to
the web.config file:

 <pages enableViewState="false" />

c04Understanding Web Application100 Page 100 2/26/11 11:47:49 AM f-392c04Understanding Web Application100 Page 100 2/26/11 11:47:49 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 101

INTRODUCING SERVER-SIDE STATE MANAGEMENT
Server-side state management uses server resources to store state information. Using server-
side techniques eliminates the possibility that a user will try to hack the client-side code or
read the session data. However, storing and processing session information on a server increases
the server’s load and requires additional server resources to serve the Web pages.

ASP.NET supports server-side state management at two levels:

• Session state: An ASP.NET application creates a unique session for each user who
sends a request to the application. ASP.NET distinctly identifies each of these sessions
by sending a unique SessionId to the requesting URL. This SessionId is transmitted as
a cookie or embedded in the URL, depending on the application’s configuration. The
ability to uniquely identify and relate requests can be used to store session-specific data
that is also known as the session state of the Web application. A common example of
session state is storing shopping cart contents for users as they browse through a Web-
based store.

The session state can be configured for storage on another server or a SQL server. This is
useful when a user’s request can be processed by one of the many servers in a Web farm.
A Web farm is a collection of Web servers used collectively to serve a Web site. Web farms
are necessary to support traffic on popular Web sites.

TAKE NOTE*

• Application state: Application state is used to store data that is used throughout an
application. Application state can be easily accessed through the Application property
of the Page class. This property provides access to the HttpApplicationState object that
stores the application state as a collection of key-value pairs.

The following exercise shows how to use the session state. This exercise involves two Web
forms. The WebForm1.aspx gets a user name and stores it in the session state. The form
then transfers the user to the WebForm2.aspx, which retrieves the user name from the
session.

USE SESSION STATE

GET READY. To use session state, perform the following steps:

 1. Add a new project based on the ASP.NET Empty Web Application template to the
Lesson04 solution. Name the project UsingSessionState.

 2. Select Project > Add New Item. Select the Web Form template. Name the file
WebForm1.aspx

 3. Change the HTML markup of the WebForm1.aspx to the following:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="WebForm1.aspx.cs"

 Inherits="UsingSessionState.WebForm1" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

c04Understanding Web Application101 Page 101 2/26/11 11:47:49 AM f-392c04Understanding Web Application101 Page 101 2/26/11 11:47:49 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

102 | Lesson 4

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="Label1" runat="server"

 Text="Please enter your name:" />

 <asp:TextBox ID="TextBox1" runat="server" />

 <asp:Button ID="Button1" runat="server"

 Text="Submit" onclick="Button1_Click" />

 </div>

 </form>

</body>

</html>

 4. Right-click in the code window and select View Code from the shortcut menu to switch to
the code-behind file (WebForm1.aspx.cs). Replace the code in that file with the following:

using System;

namespace UsingSessionState

{

public partial class WebForm1

 : System.Web.UI.Page

{

 protected void Page_Load

 (object sender, EventArgs e)

 {

 if (Session["Name"] != null)

 Response.Redirect("WebForm2.aspx");

 }

 protected void Button1_Click

 (object sender, EventArgs e)

 {

 Session.Add("Name", TextBox1.Text);

 Response.Redirect("WebForm2.aspx");

 }

 }

}

 5. Add a new Web Form (WebForm2.aspx) to the project. Change the markup of the page
to the following:

<%@ Page Language="C#" AutoEventWireup="true"

 CodeBehind="WebForm2.aspx.cs"

 Inherits="UsingSessionState.WebForm2" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

c04Understanding Web Application102 Page 102 2/26/11 11:47:49 AM f-392c04Understanding Web Application102 Page 102 2/26/11 11:47:49 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 103

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Label ID="Label1" runat="server" />

 <asp:Button ID="Button1" runat="server"

 Text="Clear Session"

 onclick="Button1_Click" />

 </div>

 </form>

</body>

</html>

 6. Change the code in the code-behind file (WebForm2.aspx.cs) for the form so that it
reads as follows:

using System;

namespace UsingSessionState

{

 public partial class WebForm2

 : System.Web.UI.Page

 {

 protected void Page_Load(

 object sender, EventArgs e)

 {

 if (Session["Name"] != null)

 Label1.Text = String.Format(

 "Welcome, {0}", Session["Name"]);

 else

 Response.Redirect("WebForm1.aspx");

 }

 protected void Button1_Click(

 object sender, EventArgs e)

 {

 Session.Remove("Name");

 Response.Redirect("WebForm1.aspx");

 }

 }

}

 7. Select Debug > Start Debugging (or press F5). The WebForm1.aspx page will open
in a Web browser, as shown in Figure 4-8. Enter a name and click the Submit button.
This page stores the entered name in the session state.

c04Understanding Web Application103 Page 103 2/26/11 11:47:50 AM f-392c04Understanding Web Application103 Page 103 2/26/11 11:47:50 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

104 | Lesson 4

 8. Next, you’ll be transferred to WebForm2.aspx, as shown in Figure 4-9. WebForm2.aspx
retrieves the user name from the session state. In the same browser window (so
that you are within the same session), try accessing WebForm1.aspx. Notice that
as long as the session contains an entry for the name, you will be redirected to
WebForm2.aspx. Press the Clear Session button. This clears the session and transfers
you to WebForm1.aspx.

Figure 4-8

This page stores the entered
name in the session state

ASP.NET applications must be deployed on an Internet Information Services (IIS) Web
server. IIS is an integral part of Windows Server operating systems and provides functionality
for hosting Web sites.

Deploying an ASP.NET application is uncomplicated because ASP.NET provides xcopy
deployment. What this means is that all you need to do to deploy an ASP.NET Web site to a
Web server is copy the files to the correct locations. You can copy these files using either the
Windows xcopy command or a File Transfer Protocol (FTP) application.

CERTIFICATION READY
Do you understand the
basics of Microsoft
ASP.NET Web application
development?
4.2

■ Understanding IIS Web Hosting

Web hosting involves setting up a Web server with correct code files and settings so that
remote users can successfully access a Web application.THE BOTTOM LINE

Some complex Web applications may require you to deploy DLL files to the global
 assembly cache (GAC). In such situations, you may actually need to create a Windows
Installer package for deployment rather than using xcopy or FTP.

TAKE NOTE*

Figure 4-9

This page retrieves the dis-
played name from the session
state

c04Understanding Web Application104 Page 104 2/26/11 11:47:50 AM f-392c04Understanding Web Application104 Page 104 2/26/11 11:47:50 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 105

You can use IIS to host multiple Web sites and share information with users over the Internet
or over an intranet. IIS uses a hierarchical relationship among sites, applications, and virtual
directories as a basic building block for hosting online content.

IIS can be administered using the IIS Manager tool, which is part of the Windows operating
system. The IIS Manager tool, as shown in Figure 4-10, provides a graphical user interface
to configure Web sites, applications, and virtual directories. The screenshot in Figure 4-10
is from a computer running Windows 7. The user interface of IIS Manager is different on
Windows XP.

Understanding Internet Information Services

Internet Information Services (IIS) is a Web server for hosting Web applications on
the Windows operating system. An IIS server uses the concepts of sites, applications, and
virtual directories.

Figure 4-10

Internet Information Services
(IIS) Manager interface on a
computer running Windows 7

Creating Virtual Directories and Web Sites

A Web site is a container of applications and virtual directories. A virtual directory is
an alias that maps to a physical directory on the Web server.

A Web site is a container of applications and virtual directories that can be accessed using
a Web address. For example, the URL www.northwind.com may point to a Web site that
has many virtual directories, such as orders and accounts, each of which can be accessed in
 combination with the Web site address—for example, via www.northwind.com/orders and
www.northwind.com/account.

A Web server never exposes the actual physical address and location of files to the external
world. Instead, it uses a system of aliases that map to the physical directories. These aliases

c04Understanding Web Application105 Page 105 2/26/11 11:47:53 AM f-392c04Understanding Web Application105 Page 105 2/26/11 11:47:53 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

106 | Lesson 4

are also called virtual directories. The virtual directories become a part of the URL, as
 demonstrated in the previous example. When IIS receives a request for such a URL, it maps
the virtual directory to the physical location of the files. The following exercise shows how to
create a virtual directory.

CREATE VIRTUAL DIRECTORY

GET READY. To create a virtual directory using the IIS manager, take the following steps:

 1. Open the IIS Manager. To open IIS Manager in Windows 7, type IIS in the Start menu,
then click on the Internet Information Service (IIS) Manager shortcut. To access IIS
Manager in Windows XP, go to Start > Run, type "inetmgr", and click the OK button.

 2. Expand the nodes on the left panel (see Figure 4-10) and select the Default Web Site

node.

 3. Right-click on the Default Web Site node and select the Add Virtual Directory

option from the shortcut menu. In Windows XP, the command will be New > Virtual

Directory. At this point, a Virtual Directory Creation Wizard will appear on your
screen.

 4. In the Add Virtual Directory dialog box, provide an alias and physical path, as shown
in Figure 4-11, then click OK.

There are two primary ways in which you can deploy files to a Web site:

• Using xcopy or FTP: Many Web applications and Web services simply require the
files to be copied onto the Web server. These sites and services don’t require any special
actions, such as restarting IIS services, registering the components to Windows Registry,
and so on. The xcopy or FTP deployment is ideal in such scenarios.

• Using Windows Installer: Windows Installer can perform a number of custom actions
during the deployment process. Therefore, it can be used for deploying complex Web
sites that require automatically creating virtual directories, restarting services, registering
components, and so on.

Deploying Web Applications

Deployment of simple Web sites is accomplished by copying the files to the correct loca-
tion. To install a complex Web site, you may need to use Windows Installer.

CERTIFICATION READY
Do you understand the
basics of Web hosting
with the IIS Web server?
4.3

Figure 4-11

Add Virtual Directory dialog
box

c04Understanding Web Application106 Page 106 2/26/11 11:47:55 AM f-392c04Understanding Web Application106 Page 106 2/26/11 11:47:55 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 107

Web services provide a way to interact with programming objects located on remote
 computers. What makes Web services special is that all communication between Web service
servers and their clients occurs via Extensible Markup Language (XML) messages transmitted
over the Hypertext Transfer Protocol (HTTP).

By using these standard technologies, remote objects can be published and consumed by
 otherwise noncompatible systems. For example, a remote object written in C# and published
as a Web service on a Windows Web server can be processed by Java code running on a Linux
machine.

Before we get into the details of creating and consuming Web services, let’s familiarize
 ourselves with two key technologies that make Web services possible:

• Simple Object Access Protocol (SOAP)
• Web Services Description Language (WSDL)

■ Understanding Web Services Development

A Web service is a software component that can be accessed over a network using standard
network protocols such as HTTP. Web services are described using the Web services
description language (WSDL).

THE BOTTOM LINE

Introducing SOAP

SOAP is the protocol for exchanging structured information in a Web service communi-
cation between two remote computers.

SOAP is the protocol that defines how remote computers exchange messages as part of a
Web service communication. SOAP relies on XML as its message format and uses HTTP for
message transmission. Using SOAP to communicate has two major benefits. First, because
Web service messages are formatted as XML, they’re easier for noncompatible systems to
understand. Second, because these messages are transmitted over the pervasive HTTP, they
can normally reach any machine on the Internet without being blocked by firewalls.

Here’s a typical SOAP packet sent from a client to a Web service:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi=http://www.w3.org/2001/XMLSchema–instance

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ToLower xmlns="http://northwindtraders.com">

 <inputString>SAMPLE STRING</inputString>

 </ToLower>

 </soap:Body>

</soap:Envelope>

c04Understanding Web Application107 Page 107 2/26/11 11:47:57 AM f-392c04Understanding Web Application107 Page 107 2/26/11 11:47:57 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

108 | Lesson 4

As you look at the example, notice some of the obvious elements of this SOAP packet:

• The packet consists of an envelope that contains a body; each is identified with a specific
XML tag.

• The body consists of the name of the method to be invoked. In this SOAP packet, the
method name is ToLower, and it takes a single parameter by the name of inputString
and a given value.

Here is the response packet from the server:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ToLowerResponse

 xmlns="http://northwindtraders.com">

 <ToLowerResult>sample string</ToLowerResult>

 </ToLowerResponse>

 </soap:Body>

</soap:Envelope>

In the response packet, the ToLowerResponse XML element is the result of the method
 invocation on the server.

Introducing WSDL

WSDL is an XML-based language for describing Web services.

WSDL stands for Web services description language, and it provides a standard by which
a Web service can tell its client what kind of messages it will accept and what results will be
returned. A WSDL file acts as the public interface of a Web service and includes the following
 information:

• The data types it can process

• The methods it exposes

• The URLs through which those methods can be accessed

Creating Web Services

In this section, you learn how to create and publish a Web service.

In this section, you’ll learn how to create a simple Web service called TextWebService that
exposes two methods, ToLower and ToUpper. These methods convert a given string to lower-
case and upper-case letters, respectively. Although this example is simple, it covers all aspects
of creating a Web service that may involve more complex processing logic.

A Web service can exist
without a WSDL file,
but you must know the
exact incoming SOAP
message that the Web
service expects before
you can use that service.

TAKE NOTE*

c04Understanding Web Application108 Page 108 2/26/11 11:47:57 AM f-392c04Understanding Web Application108 Page 108 2/26/11 11:47:57 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 109

CREATE A WEB SERVICE

GET READY. To create a Web service, perform the following actions:

 1. Add a new project based on the ASP.NET Empty Web Application template to the
Lesson04 solution. Name the project TextWebService, as shown in Figure 4-12.

Figure 4-12

Select the ASP.NET Empty Web
Application template

 2. Select Project > Add New Item from the shortcut menu. Select the Web Service

template, as shown in Figure 4-13. Name the Web service TextWebService.asmx.

Figure 4-13

Select the Web Service
 template

 3. Change the default code for the TextWebService class in the TextWebService.asmx.cs
file as shown below:

[WebService(Namespace = "http://northwindtraders.com/")]

[WebServiceBinding(ConformsTo

 = WsiProfiles.BasicProfile1_1)]

public class TextWebService:
 System.Web.Services.WebService

c04Understanding Web Application109 Page 109 2/26/11 11:47:57 AM f-392c04Understanding Web Application109 Page 109 2/26/11 11:47:57 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

110 | Lesson 4

{

 [WebMethod]

 public string ToUpper(string inputString)

 {

 return inputString.ToUpper();

 }

 [WebMethod]

 public string ToLower(string inputString)

 {

 return inputString.ToLower();

 }

}

 4. Select Debug > Build TextWebService to compile the project and ensure that there
are no errors. The Web service is now ready for use.

In the above code, there are few important things to note. First, notice that each class that is
exposed as an XML Web service needs to have a WebService attribute. The WebService attri-
bute has a Namespace property that defaults to https://tempuri.org/. Although it is okay to
have this value at development time, the namespace value should be changed before the Web
service is published. In fact, each individual Web service must have a unique namespace in
order for client applications to distinguish it from other Web services.

Each method that is exposed from the Web service also needs to have a WebMethod attribute. The
methods marked with WebMethod attributes are also known as Web methods. The two methods
used in this exercise convert a given string to upper-case and lower-case letters, respectively.

To test a simple Web service such as the TextWebService created above, all you need is a Web
browser. You can select methods to invoke, pass parameters, and review the return values from
within the browser, as shown in the following exercise.

TEST A WEB SERVICE

GET READY. To test a Web service, perform the following tasks:

 1. Open the TextWebService project that you created in the previous exercise. Select
Debug > Start Debugging. A browser will be launched displaying the Web service test
page, as shown in Figure 4-14.

You can use your
 company’s domain name
as part of the namespace
to distinguish your
Web services from the
services published by
other companies.

TAKE NOTE*

Figure 4-14

Web service test page

c04Understanding Web Application110 Page 110 2/26/11 11:48:02 AM f-392c04Understanding Web Application110 Page 110 2/26/11 11:48:02 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 111

 2. On the test page, click on the Service Description link. In this way, you will be able to
view the WSDL for this Web service. Click on the Back button to return to the test page.

 3. Notice that all the Web methods appear as links on the test page. To invoke a partic-
ular Web method, click on its link. After doing so, you should see a page for testing
the selected Web method, as shown in Figure 4-15.

Figure 4-15

Web method test page

 4. Each Web method test page shows the SOAP and other messages that the Web service
understands. It also contains a form that allows you to enter method parameters
and test the Web method. Enter a test input string and click the Invoke button. You
should see a result on the next page, as shown in Figure 4-16.

Figure 4-16

Return value from the Web
service test

 5. Test both methods. When you are finished, close the Web browser.

c04Understanding Web Application111 Page 111 2/26/11 11:48:04 AM f-392c04Understanding Web Application111 Page 111 2/26/11 11:48:04 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

112 | Lesson 4

As demonstrated in the exercise, when you click on the Invoke button, the test page
 constructs the appropriate SOAP packets for the Web service to process and then displays
the results returned from the Web service.

Consuming Web Services

In this section, you learn how to access Web services from a client application.

Earlier in the lesson, you learned how to invoke a Web service from the Web service test page.
In this section, you’ll learn how to call a Web service programmatically from within an ASP.NET
client application.

ACCESS A WEB SERVICE FROM A CLIENT APPLICATION

GET READY. To access a Web service from a client application, perform the following steps:

 1. Add a new project to the solution Lesson04 based on the ASP.NET Web Application
template. Name the project TextWebServiceClient.

 2. Right-click the project’s name in the Solution Explorer window, then select the Add

Web Reference option from the shortcut menu. In the Add Web Reference dialog box,
enter the URL of the service created in the previous exercise, and press Enter. (You
can also copy the URL from the browser’s address bar.) This action loads the list of
operations available on the Web service, as shown in Figure 4-17.

Figure 4-17

Add Web Reference dialog box

 3. In the Add Web Reference dialog box, change the name of the Web reference to
 textWebService and click the Add Reference button. This will add a Web Reference to
the project, as shown in Figure 4-18.

c04Understanding Web Application112 Page 112 2/26/11 11:48:08 AM f-392c04Understanding Web Application112 Page 112 2/26/11 11:48:08 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 113

 4. Change the code of the Default.aspx to the following:

<%@ Page Title="Home Page" Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="TextWebServiceClient._Default" %>

<html>

 <head><title>TextWebService Client

 </title></head>

 <body>

 <form runat="server">

 <h2>Test Form For TextWebService</h2>

 <p>

 <asp:TextBox ID="TextBox1"

 runat="server"

 Text="enter text" />

 <asp:Button ID="Button1"

 runat="server"

 Text="Invoke Service Methods"

 onclick="Button1_Click" />

 </p>

 <p>

 Results:

 ToLower method:

 <asp:Label ID="toLowerLabel"

 runat="server"

 Text="Label" ForeColor="Green" />

Figure 4-18

Web References Node for the
project

c04Understanding Web Application113 Page 113 2/26/11 11:48:10 AM f-392c04Understanding Web Application113 Page 113 2/26/11 11:48:10 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

114 | Lesson 4

 ToUpper method:

 <asp:Label ID="toUpperLabel"

 runat="server"

 Text="Label" ForeColor="Green" />

 </p>

 </form>

 </body>

</html>

 5. Open the Design view for Default.aspx and double-click the Button control. This adds
code for the Click event handler. Modify the code as shown below:

protected void Button1_Click(

 object sender, EventArgs e)

{

 var webService =

 new textWebService.TextWebService();

 toLowerLabel.Text =

 webService.ToLower(TextBox1.Text);

 toUpperLabel.Text =

 webService.ToUpper(TextBox1.Text);

}

 6. Select Debug > Start Debugging to run the Web application. Enter some sample text,
then click the Invoke Service Methods button. You should see the results from the
TextWebService, as shown in Figure 4-19.

When you invoke a
Web service method,
you have a choice of
using a synchronous
or an asynchronous
method. You may want
to use the asynchronous
method to increase the
responsiveness of the
 client application.

TAKE NOTE*

In the above exercise, when you add a Web reference, Visual Studio creates a local proxy that
represents the remote service. The proxy simplifies communication with the Web service by
accepting messages, forwarding them to the Web service, and returning results from the Web
service.

You can easily use this proxy to create objects from the Web service and invoke methods. As a
result, working with remote objects is similar to working with local objects.

Figure 4-19

Return value from the Web
service

c04Understanding Web Application114 Page 114 2/26/11 11:48:12 AM f-392c04Understanding Web Application114 Page 114 2/26/11 11:48:12 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 115

When you create a Web reference, Visual Studio reads the appropriate WSDL file to determine
which classes and methods are available on the remote server. When you call a method on a
remote object, the .NET Framework translates your call and results into SOAP messages and
transmits them with no intervention on your part.

CERTIFICATION READY
Do you understand the
basics of Web services
development?
4.4

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• A Web page is a document that is served over the World Wide Web (WWW) and can be
 displayed by a Web browser.

• Hypertext Markup Language (HTML) is the language used by Web servers and browsers to
describe a Web page.

• Cascading style sheets (CSS) enable you to store style and formatting information separate
from HTML code. This separation makes it easy to update a Web site. Visual Studio includes
tools to build and preview your style sheets.

• JavaScript is a client-side scripting language that runs inside a Web browser to help create
far more interactive Web pages than are possible with only HTML.

• Client-side state management techniques such as query strings, cookies, hidden fields, and
ViewState use HTML and the capabilities of Web browsers to store state information on
 client computers.

• Server-side state management techniques such as session state and application state use
server resources for state management.

• Internet Information Services (IIS) is a Web server for hosting Web applications on the
Windows operating system. An IIS server uses the concepts of sites, applications, and
 virtual directories.

• Web services provide a way to invoke remote objects using standard technologies such as
XML and HTTP.

• SOAP is the protocol that defines how remote computers exchange messages as part of
Web service communication. SOAP relies on XML for its message format and uses HTTP for
message transmission.

• WSDL provides a standard by which a Web service can tell its client what kinds of messages
it will accept and what results will be returned.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. In the HTML anchor tag (<a>), the _________ attribute specifies the target URL.

 2. You can put CSS code in a separate file and link it to a Web page through use of the
HTML _________ element.

 3. The JavaScript code on a Web page is executed on the _________.

■ Knowledge Assessment

c04Understanding Web Application115 Page 115 2/26/11 11:48:13 AM f-392c04Understanding Web Application115 Page 115 2/26/11 11:48:13 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

116 | Lesson 4

 4. You can use a(n) _________ element to display a specific message to users when their
browser is not running JavaScript.

 5. You can disable ViewState at the page level by setting the _________ attribute of the
Page directive to false in the ASP.NET page.

 6. The _________ state is used to store data that is used globally throughout an application,
as opposed to the _________ state, which stores data for a user session.

 7. A Web application is accessed using a(n) _________ name instead of a physical folder
name.

 8. You must mark classes with the _________ attribute to expose them as a Web service.

 9. Of all the methods in a Web service class, only those marked with _________ attributes
are exposed as Web service methods.

 10. SOAP relies on _________ as its message format and uses _________ for message
 transmission.

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. You write the following code for your Web page:

<html>

 <head>

 <title>Sample Page</title>

 <style type="text/css">

 div

 {

 font-family: Verdana;

 font-size: 9pt;

 }

 </style>

 </head>

 <body>

 <div style=

 "font-weight: bold; font-size: 12pt;">

 Sample Text</div>

 </body>

</html>

 What would be the style for text displayed as part of the <div> element?
a. Font family: Verdana; font weight: bold; font size: 12pt
b. Font family: Verdana; font weight: bold; font size: 9pt
c. Font family: Verdana; font size: 12pt
d. Font family: Verdana; font size: 9pt

c04Understanding Web Application116 Page 116 2/26/11 11:48:14 AM f-392c04Understanding Web Application116 Page 116 2/26/11 11:48:14 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 117

 2. You are developing a mapping Web site that allows users to interactively explore maps
using actions such as panning and zooming. You want the Web site to be responsive
and accessible in most modern Web browsers. However, you do not want users to need
to install additional plug-ins in order to use your Web site. Which of the following
 technologies should you use to display maps?
a. HTML
b. Server-side programming technology such as ASP.NET
c. Adobe Flash
d. JavaScript

 3. Your ASP.NET page contains a page-level variable of Customer type. You want to pre-
serve the value of this variable across page postbacks, but you do not need this variable in
any other page in the application. Which of the following state-management techniques
is the best way to achieve this?
a. Query strings
b. Cookies
c. ViewState
d. Session

 4. You are developing a Web application for an online bank. Your application enables users
to access their account information and transactions from within a Web browser. When
a user logs onto the Web application, you want to show the username and account balance
on all pages of the application until the user logs off. You also want this application to be
safe from malicious users. Which of the following state-management techniques should
you use?
a. Cookies
b. ViewState
c. ViewState with encryption
d. Session

 5. You are developing a Web form to display weather information. When a user requests
the Web form, the form needs to perform some initialization to change its appearance
and assign values to some controls. Where should you put the code?
a. In the PreInit event handler of the Page class
b. In the Init event handler of the Page class
c. In the Load event handler of the Page class
d. In the PreRender event handler of the Page class

 6. You want to display values of the C# expressions in an ASP.NET page. Which of the
following types of code blocks should you use to enclose the expression?
a. <script runat=“server”>…</script>
b. <script>…</script>
c. <%= … %>
d. <form>…</form>

 7. You have developed a timesheet application that will be used by all employees in your
company. You used ASP.NET to develop this application and have deployed it on
the company’s Web server. What must all employees of the company install on their
 computers before they can access the timesheet application?
a. .NET Framework Redistributable
b. .NET Framework Software Development Kit
c. Visual Studio
d. A Web browser

c04Understanding Web Application117 Page 117 2/26/11 11:48:14 AM f-392c04Understanding Web Application117 Page 117 2/26/11 11:48:14 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

118 | Lesson 4

 8. Your client application calls for a Web service that performs complex, time-consuming
calculations. A user complains that while results are being returned, the user interface
freezes momentarily. Which approach should you take to solve this issue?
a. You should install a better processor on the Web server.
b. You should install a better processor on the client computer.
c. You should upgrade to a faster Internet connection.
d. You should use asynchronous calls to invoke the Web service.

 9. You have created an ASP.NET Web service that converts one currency into another. One
of the methods in your Web service is defined with the following code:

public double Convert(double amount,

 string from, string to)

{

 // code to perform currency conversion

}

 The users of the Web service report that they can set a reference to the Web service but
the Convert method is not available to them. What could be the problem?
a. The .asmx file for the Web service is not available on the Web server.
b. The Web service class is not marked with the WebService attribute.
c. The Convert method is not marked with the WebMethod attribute.
d. Web services can only expose methods that return text values.

 10. You are working on two Visual Studio projects. The first project is a Web service that
returns a DataSet object belonging to the System.Data namespace. The second project
accesses the Web service created by the first project. Which project in this scenario
requires a reference to the System.Data namespace?
a. The Web service project
b. The client project that accesses the Web service
c. Both the client project and the Web service project
d. Neither the client project nor the Web service project

■ Competency Assessment

Scenario 4-1: Using JavaScript and HTML

You are developing a Web page that provides a responsive user interface. You decide to display
an image on the page. When the user moves his or her mouse over the image, the original
image is replaced with a new image. Then, when the mouse moves out of the image area, the
original image is displayed again. You hope to accomplish this using client-side JavaScript and
HTML code. How would you create a Web page that works as described here?

Scenario 4-2: Using Query Strings

You are developing a portion of a Web site that allows users to enter their name and email
address to subscribe to an email newsletter. Your solution consists of two Web pages. The first
page collects the user name and email address and then transfers control to a second page.
The second page accepts the name and the email address as query-string parameters and
 displays a confirmation message to the user. You need to write code for these two pages.
What code will you write to accomplish this requirement?

c04Understanding Web Application118 Page 118 2/26/11 11:48:14 AM f-392c04Understanding Web Application118 Page 118 2/26/11 11:48:14 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Web Applications | 119

■ Proficiency Assessment

Scenario 4-3: Calling a Web Service Asynchronously

The proxy class generated by Visual Studio for a Web service includes methods for calling
the Web service synchronously as well as asynchronously. By default, the application uses the
 synchronous method. If you prefer asynchronous invocation, you need to call the asynchronous
version of the method. The asynchronous versions do not wait for the Web service to return
a response and use a callback mechanism to get a response when it is ready. Asynchronous
 invocation of a Web service may help client applications be more responsive. If you want
to call the ToLower method of the previously created TextWebService in an asynchronous
fashion. What code would you write for asynchronously invoking a Web service?

Scenario 4-4: Using Session State

You are developing a portion of a Web site that allows users to enter their name and email
address to subscribe to an email newsletter. Your solution consists of two Web pages. The first
page collects the user name and email address, adds them to the session state, and transfers
control to a second page. The second page retrieves the name and the email address from the
session state and displays a confirmation message. You need to write code for these two pages.
What code will you write to accomplish this requirement?

c04Understanding Web Application119 Page 119 2/26/11 11:48:14 AM f-392c04Understanding Web Application119 Page 119 2/26/11 11:48:14 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding
Desktop Applications

120

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Objects Understand Windows Forms
 applications. 5.1

Understanding Values and Understand console-based 5.2
References applications.

Understanding Encapsulation Understand Windows services. 5.3

You are a software developer for a large business organization. You need to develop an
application that integrates closely with the user’s Windows desktop and provides a user
interface similar to that of popular desktop applications on the Windows platform. The
application needs to be functional whether it is connected to or disconnected from the
network. The application should also be able to communicate with devices such as hand-
held scanners and printers.

■ Understanding Windows Forms Applications

THE BOTTOM LINE

Windows Forms applications are smart client applications consisting of one or more
forms that display a visual interface to the user. These applications integrate well with the
operating system, use connected devices, and can work whether connected to the Internet
or not.

LESSON5

K E Y T E R M S

command-line parameters

console-based application

delegates

events

installer

Multiple Document
 Interface (MDI) applications

visual inheritance

Windows Forms applications

Windows service

c05UnderstandingDesktopApplicati120 Page 120 2/26/11 10:37:15 AM f-392c05UnderstandingDesktopApplicati120 Page 120 2/26/11 10:37:15 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 121

A form and its components generally respond to user actions such as keystrokes or mouse
movement. These actions are called events. Much of the code that you write as a Windows
Forms developer is directed toward capturing such events and handling them by creating an
appropriate response. For instance, in the following exercise, you will create a Windows Form
that displays the date value selected by the user.

CREATE A WINDOWS FORM

GET READY. Launch Microsoft Visual Studio. Then, perform the following actions:

 1. Create a new project based on the Windows Forms Application template, as shown in
Figure 5-2. Name the project WindowsFormsDesign.

A Windows Form is a visual surface capable of displaying a variety of controls, including
text boxes, buttons, and menus. Visual Studio provides a drag-and-drop Windows Forms
designer that you can use to easily create your applications.

To design Windows Forms, you must first decide what controls you want to place on the
form. Windows Forms provides a large collection of common controls that you can readily
use to create an excellent user interface. If the functionality you are looking for is not already
available as a common control, you have the option to either create a custom control yourself
or buy a control from a third-party vendor.

You can use the functionality provided by Visual Studio’s Windows Forms Designer to quickly
place and arrange controls per your requirements. Visual Studio provides easy access to the
available controls through its toolbox, as shown in Figure 5-1.

A control is a distinct
user interface element
that accepts input from
the user or displays out-
put to the user.

TAKE NOTE*

Figure 5-1

Visual Studio toolbox

Designing a Windows Form

c05UnderstandingDesktopApplicati121 Page 121 2/26/11 10:37:15 AM f-392c05UnderstandingDesktopApplicati121 Page 121 2/26/11 10:37:15 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

122 | Lesson 5

 2. The Windows Form Application project will load with a default form (Form1.cs)
opened in the Designer view. The Designer view allows you to work visually with
the form. For example, you can arrange controls on the form’s surface and set their
properties. Available controls can be accessed from the Toolbox window. If you don’t
already see the Toolbox window, select View > Toolbox to display it. Then, from the
Toolbox, drag and drop a DateTimePicker control and a Label control on the Designer
surface and arrange the controls as shown in Figure 5-3.

Figure 5-3

Windows Form with a
DateTimePicker control and a
Label control

 3. In the Designer view, select the Label control and, using the Properties window, set
its Text property to an empty string.

 4. Also in the Designer view, double-click the DateTimePicker control. This action
attaches the default event handler for the ValueChanged event of the DateTimePicker
control and switches the view from Designer to Code. Next, change the default code
for the event handler as follows:

private void dateTimePicker1_ValueChanged

 (object sender, EventArgs e)

{

 label1.Text =

 dateTimePicker1.Value.ToLongDateString();

}

Figure 5-2

Visual Studio New Project dialog box

c05UnderstandingDesktopApplicati122 Page 122 2/26/11 10:37:17 AM f-392c05UnderstandingDesktopApplicati122 Page 122 2/26/11 10:37:17 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 123

 5. Select Debug > Start Debugging (or press F5) to run the project. On the user inter-
face, select a new date and verify that the selected date is displayed on the Label
control.

In this exercise, note that when the form is initially displayed, the Label control is set
to an empty string. Then, as soon as you change the date selection by manipulating the
DateTimePicker control, the selected date value is set as the text for the Label control.

In this exercise, we
used the default con-
trol names. In complex
forms with more con-
trols, it’s always a good
idea to give the controls
more meaningful names.

TAKE NOTE*

Understanding the Windows Form Event Model

Event handling plays a key role in user interface-based programming; through event
handling, you respond to various events that are fired as a result of user actions and thus
make programs interactive. The Windows Forms event model uses .NET Framework
 delegates to bind events to their respective event handlers.

In Windows Forms applications, each form and control exposes a predefined set of events.
When an event occurs, the code in the associated event handler is invoked. For instance,
in the previous exercise, when you double-clicked the DateTimePicker control to add code
to the event handler, Visual Studio generated the following code to attach the event han-
dler to the event:

this.dateTimePicker1.ValueChanged �=

 new System.EventHandler(

 this.dateTimePicker1_ValueChanged);

Here, ValueChanged is the event of the DateTimePicker control that we want to capture. So,
a new instance of the delegate of type EventHandler is created and the method dateTimePicker1_
ValueChanged is passed to the event handler. The dateTimePicker1_ValueChanged method is
the method in which you will actually write the event-handling code.

This code is automatically generated by the Visual Studio Designer. You will find this code
in the code-behind file for the designer (Form1.Designer.cs), inside a code region entitled
Windows Form Designer generated code.

Yet another thing to notice is that the syntax for adding a delegate uses the �= operator. That’s
because the .NET Framework supports multicast delegates in which a delegate can be bound
to more than one method, thus allowing one-to-many notifications when an event is fired.

A delegate can be bound
to any method whose
signature matches that
of the event handler.

TAKE NOTE*

Using Visual Inheritance

Visual inheritance allows you to reuse existing functionality and layout for Windows
Forms.

One of the core principles of object-oriented programming is inheritance. When a class
 inherits from a base class, it derives its base functionality from the base class. Of course, you
can always extend the derived class to provide additional functionality and be more useful.

c05UnderstandingDesktopApplicati123 Page 123 2/26/11 10:37:21 AM f-392c05UnderstandingDesktopApplicati123 Page 123 2/26/11 10:37:21 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

124 | Lesson 5

A Windows Form, at its core, is just another class; therefore, inheritance applies to it as well.
However, when inheritance is applied to a Windows Form, it causes the inheritance of all
the visual characteristics of a form, such as size, color, and any controls placed on the form.
You can also visually manipulate any of the properties that are inherited from the base class.
Therefore, inheriting Windows Forms is often called visual inheritance. In the following
exercise, you will create a Windows Form via visual inheritance of an existing form.

CREATE A WINDOWS FORM USING VISUAL INHERITANCE

GET READY. Launch Microsoft Visual Studio and open the existing Windows Application
Project named WindowsFormsDesign. Then, perform these steps:

 1. Open Form1.designer.cs and change the access modifiers for the label1 and
dateTimePicker1 controls from private to protected, as shown:

protected System.Windows.Forms.Label label1;

protected System.Windows.Forms.DateTimePicker

 dateTimePicker1;

 2. Select Project > Add Windows Forms to add a new Windows Form based on the
Inherited Form template. You can quickly search for this template by typing its name
in the search box, as shown in Figure 5-4. Name the inherited form InheritedForm.cs.
(Note that the Inherited Form template is not available in Visual Studio Express edi-
tions. If you are using an Express edition, just create a regular Windows Form named
InheritedForm.cs and proceed to Step 4.)

Figure 5-4

Inherited Form template

c05UnderstandingDesktopApplicati124 Page 124 2/26/11 10:37:21 AM f-392c05UnderstandingDesktopApplicati124 Page 124 2/26/11 10:37:21 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 125

 4. Select the Code view for the InheritedForm; you will see that the class InheritedForm
inherits from Form1, as shown below. If you did not use the Inherited Form template
in Step 2, you’ll need to manually modify the code to add the code for inheritance
(shown in bold):

public partial class InheritedForm

 : WindowsFormsDesign.Form1

{

 public InheritedForm()

 {

 InitializeComponent();

 }

}

 5. In the Designer view of the InheritedForm, set the Text property to Inherited Form.

 6. Also in the Designer view, double-click InheritedForm. This action attaches an event
handler for the Load event of the form and switches the view from Designer to Code.
In Code view, change the default code for the event handler as follows:

private void InheritedForm_Load(

 object sender, EventArgs e)

{

 label1.Text =

 dateTimePicker1.Value.ToLongDateString();

}

Figure 5-5

Inheritance Picker dialog box

 3. Click the Add button. Then, in the Inheritance Picker dialog box, select Form1 from
the WindowsFormsDesign namespace, as shown in Figure 5-5, and click the OK button.

c05UnderstandingDesktopApplicati125 Page 125 2/26/11 10:37:23 AM f-392c05UnderstandingDesktopApplicati125 Page 125 2/26/11 10:37:23 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

126 | Lesson 5

 7. Open Program.cs and modify the Main method as shown below to make sure that
InheritedForm is launched when you run the application:

[STAThread]

static void Main()

{

 Application.EnableVisualStyles();

 Application

 .SetCompatibleTextRenderingDefault(false);

 Application.Run(new InheritedForm());

}

 8. Select Debug > Start Debugging (or press F5) to run the project. When InheritedForm
is loaded, the currently selected date is displayed on the Label control. This is unlike
the previously created Form1, in which the Label control was initially empty.

The InheritedForm form demonstrates that you can get all of Form1’s functionality simply
by inheriting the form. When you change the access modifier of Form1’s member controls,
label1 and dateTimePicker1, from private to protected, you will be able to access them from
within the inherited form. This exercise also demonstrates how you can extend the function-
ality of the base form in an inherited form.

Understanding Multiple Document Interface (MDI) Applications

Multiple Document Interface (MDI) applications are applications in which multiple
child windows reside under a single parent window.

MDI applications allow multiple windows to share a single application menu and toolbar.
MDI applications often have a menu named Window that allows users to manage multiple
child windows, offering features such as switching between child windows and arranging child
windows. For example, Figure 5-6 shows Microsoft Excel 2010 in MDI mode.

Figure 5-6

Microsoft Excel 2010 as an
MDI application

c05UnderstandingDesktopApplicati126 Page 126 2/26/11 10:37:25 AM f-392c05UnderstandingDesktopApplicati126 Page 126 2/26/11 10:37:25 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 127

MDI applications contrast with single document interface (SDI) applications in which each
window contains its own menu and toolbar. SDI applications rely on the operating system to
provide window management functionality. For example, in Windows, you can switch among
multiple windows by using the Windows Taskbar.

There is much debate among user-interface designers as to which application interface works
best. Generally speaking, SDI is considered more suited to novice users, whereas MDI is con-
sidered more suited to advanced users. Many popular applications such as Microsoft Word
and Microsoft Excel support both SDI and MDI. Word and Excel install by default as SDI
applications, but they provide users with an option to switch between SDI and MDI. For
example, in Word 2010 and Excel 2010, you can switch to MDI mode by unchecking the
“Show all windows in the Taskbar” option in the Options menu.

CREATE AN MDI APPLICATION

GET READY. Launch Microsoft Visual Studio and create a new Windows Forms Application
Project named MDIApplication. Then, perform these steps:

 1. Select the Properties window for Form1 and set the Text property to MDI Application
and the IsMdiContainer property to True.

 2. Select the MenuStrip control from the Toolbox and add it to the form. Add a top-
level menu item &Window, and then add &New Window and &Arrange at the next
level. Under the Arrange menu, add three options—&Cascade, &Horizontal, and
&Vertical—as shown in Figure 5-7.

It can be tricky to
implement support
for multiple monitors
in MDI applications
because the parent win-
dow needs to span all of
the user’s monitors.

TAKE NOTE*

Figure 5-7

Adding menu options

c05UnderstandingDesktopApplicati127 Page 127 2/26/11 10:37:28 AM f-392c05UnderstandingDesktopApplicati127 Page 127 2/26/11 10:37:28 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

128 | Lesson 5

 3. For the MenuStrip control, set its MdiWindowListItem property to the name of the
Window menu (windowToolStripMenuItem by default).

 4. In the Solutions Explorer, right-click the project and select Add > Windows Form.
Add a new Windows Form with the name ChildForm.

 5. Double-click the child form and add the following code to handle the Load event:

private void ChildForm_Load(

 object sender, EventArgs e)

{

 Text = DateTime.Now.ToString();

}

 6. On the parent form, double-click the Window > New Window menu item and add the
following event handler for its Click event:

private void newWindowToolStripMenuItem_Click(

 object sender, EventArgs e)

{

ChildForm child = new ChildForm();

child.MdiParent = this;

child.Show();

}

 7. On the parent form, double-click Window > Arrange, Window > Cascade, Window >

Arrange, Window > Horizontal, and Window > Arrange, Window > Vertical, respec-
tively, and add the following event handlers for their Click events:

private void cascadeToolStripMenuItem_Click(

 object sender, EventArgs e)

{

 LayoutMdi(MdiLayout.Cascade);

}

private void horizontalToolStripMenuItem_Click(

 object sender, EventArgs e)

{

 LayoutMdi(MdiLayout.TileHorizontal);

}

private void verticalToolStripMenuItem_Click(

 object sender, EventArgs e)

{

 LayoutMdi(MdiLayout.TileVertical);

}

TAKE NOTE*

The & sign in front of a character in a menu’s text is not displayed as is; rather, it sets the
character to be the shortcut key for the menu. For example, the &Window menu can be
invoked by pressing Alt�W. The access keys will not be evident until the user presses the
Alt key. A setting in the Windows operating system controls whether access keys are always
visible.

c05UnderstandingDesktopApplicati128 Page 128 2/26/11 10:37:29 AM f-392c05UnderstandingDesktopApplicati128 Page 128 2/26/11 10:37:29 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 129

 8. Select Debug > Start Debugging (or press F5) to run the project. Select Window >

New Window to create multiple new child windows. Switch among the child windows.
Note that there is only one application instance in the Windows Taskbar. Now, use the
options in the Window > Arrange menu to arrange the child windows. For example,
an application with three child windows might look like the image in Figure 5-8 when
the child windows are arranged horizontally.

Let’s review some of the important properties and methods used in this exercise. First, for the
parent form, the IsMdiContainer property is set to true. This property indicates that the form
is a container for multiple MDI child forms. Correspondingly, for each child form, you set
the MdiParent property to specify the parent container form.

Next, the MdiWindowListItem property of the MenuStrip is used to indicate which menu
item will be used to display the list of MDI child windows. When this property is set, the
menu item will list all the child windows and also allow you to switch among child windows.
As a result of the code in the ChildForm_Load method, the title bar for each form displays
the date and time of the instant when the form was loaded.

Finally, the LayoutMdi method is used by the menu items in the Window menu to arrange
the child windows. The method accepts a parameter of type MdiLayout enumeration. The
enumeration value determines whether the child windows need to be tiled horizontally or ver-
tically, cascaded, or displayed as icons.

CERTIFICATION READY
Do you understand how
to develop Windows
Forms applications?
5.1

■ Understanding Console-Based Applications

THE BOTTOM LINE

Console-based applications do not have a graphical user interface and use a text-mode
console window to interact with the user. These applications are best suited for tasks that
require minimal or no user interface.

As its name suggests, a console-based application is run from the console window. The input
to this application can be provided using command-line parameters, or the application can
interactively read characters from the console window. Similarly, the output of a console
application is written to the command window as well. You can enable reading or writing
to the console by creating an application using the Console Application template in Visual
Studio.

You can also use console-based applications to create commands that can be run from the
command line. For example, you can take advantage of the pipes and filters provided by the
operating system to pass the output of a command as input to another command, thereby
creating more powerful commands by combining simple commands.

To enable reading from
or writing to the console
from a Windows Forms
application, set the
project’s Output Type to
Console Application in
the project’s Properties.

TAKE NOTE*

Figure 5-8

An MDI application with three
horizontally arranged child
windows

c05UnderstandingDesktopApplicati129 Page 129 2/26/11 10:37:30 AM f-392c05UnderstandingDesktopApplicati129 Page 129 2/26/11 10:37:30 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

130 | Lesson 5

Working with Command-Line Parameters

In this section, you’ll learn how to accept command-line parameters from a console
application.

The following exercise creates a simple console application that accepts the name of a text file
as a command-line argument and displays the contents of that file.

CREATE A CONSOLE APPLICATION

GET READY. Launch Microsoft Visual Studio. Then, perform these steps:

 1. Create a new project based on the Console Application template, as shown in
Figure 5-9. Name the project DisplayFile.

Figure 5-9

Console Application template

 2. In the Program.cs, modify the code inside the Main method as shown below:

static void Main(string[] args)

{

 if (args.Length < 1)

 return;

 string[] lines = File.ReadAllLines(args[0]);

 foreach (string item in lines)

 {

 Console.WriteLine(item);

 }

}

 3. Add the following using directive to the file:

using System.IO;

c05UnderstandingDesktopApplicati130 Page 130 2/26/11 10:37:31 AM f-392c05UnderstandingDesktopApplicati130 Page 130 2/26/11 10:37:31 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 131

 4. Select Build > Build Solution (or press F6) to build the Project.

 5. Create a text file using Visual Studio or Notepad, enter some sample text, and save
the file as Sample.txt in the same folder as the executable file. (The executable file is
created by default in the bin\debug folder under the project’s folder.)

 6. Open a command prompt and navigate to the path of the project’s EXE file. Execute
the following command:

DisplayFile sample.txt

This command should display the contents of the text file in the command window.

 7. Alternatively, you can also pass the command line argument from within Visual Studio
by using the Project’s Properties window, as shown in Figure 5-10. To view the proj-
ect’s Properties window, select the Project > DisplayFile Properties menu option.

CERTIFICATION READY
Do you understand how
to develop console-based
applications?
5.2

The nature of Windows services make them ideal for creating long-running programs that
run in the background and do not directly provide any user interaction. A Windows service
can be started, paused, restarted, and stopped. A Windows service can also be set to start
automatically when the computer is started.

Some examples of Windows services include a Web server that listens for incoming requests
and sends a response, or an operating system’s print spooler that provides printing services to
the application programs.

■ Understanding Windows Services

THE BOTTOM LINE
A Windows service is an application that runs in the background and does not have any
user interface.

Figure 5-10

Setting start options in the
project’s Properties window

c05UnderstandingDesktopApplicati131 Page 131 2/26/11 10:37:34 AM f-392c05UnderstandingDesktopApplicati131 Page 131 2/26/11 10:37:34 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

132 | Lesson 5

Services play an important role in enterprise application architecture. For example, you can
have a service that listens for incoming orders and starts an order-processing workflow when-
ever an order is received.

Creating a Windows Service

To create a Windows service in Visual Studio, use the Windows Service application tem-
plate. Note that a Windows service must be installed before it can be used.

All Windows services must derive from the ServiceBase class. This base class provides the
basic structure and functionality for creating a Windows service. You can override the base
class methods OnStart, OnStop, OnPause, and OnContinue to add your own custom logic
that executes in response to changes in service states.

The following exercise demonstrates how to create a simple Windows service that writes
messages to the Application event log. Event logs are the part of Windows that is used by
operating system tasks and applications running in the background to log error or other
informational messages. Windows define three event logs by default: System, Application,
and Security. Applications usually use the Application event log to log their message. The
Windows Event Viewer utility can be used to view the messages in event logs.

CREATE A WINDOWS SERVICE

GET READY. Launch Microsoft Visual Studio. Then, perform these steps:

 1. Create a new project based on the Windows Service template. Name the project
FirstService, as shown in Figure 5-11.

TAKE NOTE*

Because a Windows service is capable of running in the background, it does not need a
logged-on user in order to function. Windows services will run in their own Windows ses-
sion in the specified security context. Still, depending on what permissions are needed, you
can specify a user account under which to run the service.

Visual Studio Express
Edition does not pro-
vides templates for cre-
ating Windows service
projects. Thus, you will
need a non-express ver-
sion of Visual Studio to
complete exercises that
use Windows service
projects.

TAKE NOTE*

Figure 5-11

Selecting the Windows Service
project template

c05UnderstandingDesktopApplicati132 Page 132 2/26/11 10:37:36 AM f-392c05UnderstandingDesktopApplicati132 Page 132 2/26/11 10:37:36 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 133

 2. Select the Properties window for Service1 and set the (Name) and ServiceName
properties to “FirstService”.

 3. In the Solution Explorer, rename the file Service1.cs as FirstService.cs. Open Program.cs
and verify that the references to Service1 have been changed to FirstService.

 4. Select the Properties window for the service and set the CanPauseAndContinue
property and the CanShutdown property to True.

 5. Open the designer for FirstService and add an EventLog component to it from the
Toolbox. The EventLog component allows you to connect with the event logs.

 6. View the code for FirstService and modify the constructor as shown below. In this
code, you first create an event source by the name FirstService. This event source is
used to distinguish messages generated by a specific application from all other mes-
sages in an event log. Then, you set the Source property of the event log component
to the name of the event source. The Log property of the event log component,
eventLog1, is used to specify the event log used to record the messages:

public FirstService()

{

 InitializeComponent();

 if (!EventLog.SourceExists(“FirstService”))

 {

 EventLog.CreateEventSource(

 “FirstService”, “Application”);

 }

 eventLog1.Source = “FirstService”;

 eventLog1.Log = “Application”;

}

 7. Add the following code to the service state change methods to define their behavior.
The WriteEntry method of the event log component, eventLog1, is used to write a
message to an event log. As part of the method, you can specify the type of message.
For example, your message can be an error message, a warning message, or just a
piece of information:

protected override void OnStart(string[] args)

{

 eventLog1.WriteEntry(

 “Starting the service”,

 EventLogEntryType.Information, 1001);

}

protected override void OnStop()

{

 eventLog1.WriteEntry(

 “Stopping the service”,

 EventLogEntryType.Information, 1001);

}

c05UnderstandingDesktopApplicati133 Page 133 2/26/11 10:37:38 AM f-392c05UnderstandingDesktopApplicati133 Page 133 2/26/11 10:37:38 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

134 | Lesson 5

protected override void OnPause()

{

 eventLog1.WriteEntry(

 “Pausing the service”,

 EventLogEntryType.Information, 1001);

}

protected override void OnContinue()

{

 eventLog1.WriteEntry(

 “Continuing the service”,

 EventLogEntryType.Information, 1001);

}

protected override void OnShutdown()

{

 eventLog1.WriteEntry(

 “Shutting down the service”,

 EventLogEntryType.Information, 1001);

}

 8. Select Build > Build Solution (or press F6) to build the project.

Here, the code for FirstService overrides the OnStart, OnStop, OnPause, OnContinue, and
OnShutdown methods to write messages to the event log. Not all services need to override
these methods, however. Whether a service needs to override these methods depends on the
value of the CanPauseAndContinue and CanShutdown properties of the Windows service.

The eventlog’s WriteEntry method takes the message to write to the log, the type of event log
entry (information, error, warning, etc.), and an eventId, which is an application-specific id
used to identify the event.

The FirstService Windows service is now ready, but before it can be used, it must be installed
in the Windows service database. This is done by adding a Service Installer to the Windows
service project. The following exercise shows how to do this.

ADD AN INSTALLER TO A WINDOWS SERVICE

GET READY. Launch Microsoft Visual Studio. Then, perform these steps:

 1. Open the FirstService project created in the previous exercise. Right-click the Designer
surface of FirstService.cs and select the Add Installer option from the context menu.

 2. This action adds a new file ProjectInstaller.cs to the project. Open the Designer for
ProjectInstaller.cs. You should see that two components were added to the Designer,
as shown in Figure 5-12.

Figure 5-12

Designer view for
ProjectInstaller.cs

c05UnderstandingDesktopApplicati134 Page 134 2/26/11 10:37:38 AM f-392c05UnderstandingDesktopApplicati134 Page 134 2/26/11 10:37:38 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 135

 3. Access the properties for the serviceProcessInstaller1component, and change the
Account property to LocalService.

 4. Next, access the properties for the serviceInstaller1component. Change the
DisplayName property to FirstService and the Description property to “A simple test
service.” Note that the value of the StartType property is set by default to Manual.

 5. Select Build > Build Solution (or press F6) to build the project. The Windows service
is now ready to be installed.

TAKE NOTE*

The StartType property of the ServiceInstaller class indicates how and when a service is
started. The StartType property can have one of three possible values. The value Manual,
which is also the default value, indicates that you need to start the service manually. The
value Automatic indicates that the service will be started automatically when Windows is
started. The value Disabled indicates that the service cannot be started.

When you add an installer to a Windows Service project, the ServiceProcessInstaller and
the ServiceInstaller classes are added to the project. The ServiceProcessInstaller class per-
forms installation tasks that are common to all the Windows services in an application. This
includes setting the login account for the Windows service. The ServiceInstaller class, on the
other hand, performs the installation tasks that are specific to a single Windows service, such
as setting the ServiceName and StartType.

The Account property of the ServiceProcessInstaller class specifies the type of account under
which the services run. The Account property is of the type ServiceAccount enumeration
where the possible values are LocalService, LocalSystem, NetworkService, and User. The
LocalSystem value specifies a highly privileged account, whereas the LocalService account acts
as a nonprivileged user.

An executable file that has the code for the service installer classes can be installed by using
the command line Installer tool (installutil.exe). The following exercise shows how to install a
Windows service application in the Windows service database.

INSTALL A WINDOWS SERVICE

GET READY. To install a Windows service, take the following steps:

 1. Run Visual Studio Command Prompt as administrator. To access the command prompt,
go to Start > All Programs > Visual Studio > Visual Studio Tools, then choose
Visual Studio Command Prompt. To run a program as administrator in Windows,
right-click on the program shortcut and select the Run as administrator option from
the shortcut menu.

 2. Change the directory to the output directory of the FirstService project. This is the
directory where the executable file is located.

To minimize secu-
rity risks, you should
refrain from using the
LocalSystem account for
running a Windows ser-
vice unless that service
requires higher security
privileges to function.

TAKE NOTE*

c05UnderstandingDesktopApplicati135 Page 135 2/26/11 10:37:40 AM f-392c05UnderstandingDesktopApplicati135 Page 135 2/26/11 10:37:40 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

136 | Lesson 5

Figure 5-13

Using installutil.exe

 3. Issue the following command; you should see results like those shown in Figure 5-13:

installutil FirstService.exe

 4. The Windows service FirstService is now installed.

The Windows service application is now stored in the Windows service database. Earlier,
when you added a ServiceInstaller for the FirstService, you set the StartType property of the
serviceInstaller1 component to Manual. As a result, you’ll need to manually start the service
when needed. The following exercise demonstrates how to start, pause, continue, and stop a
Windows service.

WORK WITH A WINDOWS SERVICE

GET READY. Launch the Computer Management window by right-clicking My Computer
and selecting Manage from the shortcut menu. Then, perform these steps:

 1. In the Computer Management window, expand the Services and Applications section
and select Services. A list of all services installed on the computer should be dis-
played, as shown in Figure 5-14.

Installing a Windows
service requires access
to Windows Registry.
Therefore, be sure to
run installUtil.exe as an
administrator.

TAKE NOTE*

To uninstall a Windows
service, use InstallUtil.
exe with the option -u.

TAKE NOTE*

Figure 5-14

The Services section allows you
to work with installed services

c05UnderstandingDesktopApplicati136 Page 136 2/26/11 10:37:40 AM f-392c05UnderstandingDesktopApplicati136 Page 136 2/26/11 10:37:40 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 137

 2. Select the FirstService service and click on the Start hyperlink, as shown in Figure 5-14.
You should see a dialog box indicating progress, as shown in Figure 5-15. When the ser-
vice is started, the status of the service will change to Started.

Figure 5-15

Service Control message when
starting a service

 3. Expand the Event Viewer node and select the Application Windows log. You should
see a message from FirstService that says “Starting the Service,” as shown in
Figure 5-16.

Figure 5-16

The Application Windows Log

 4. Go back to the list of Services and attempt to pause, resume, or stop FirstService.
Check the Application event log to verify that the appropriate messages are being
 displayed.

In the last few exercises, you saw how to create, install, and use a Windows service. You also
learned how to programmatically add messages to the Windows Application event log.

CERTIFICATION READY
Do you understand how
to develop Windows
services?
5.3

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• A Windows Form is a visual surface that can display a variety of controls, such as text boxes,
buttons, and menus. Visual Studio provides a drag-and-drop Windows Forms designer that
you can use to create applications.

• In Windows Forms, each form and control exposes a predefined set of events. When an
event occurs, the code in the associated event handler is invoked. The Windows Forms event
model uses .NET Framework delegates to bind events to their respective event handlers.

c05UnderstandingDesktopApplicati137 Page 137 2/26/11 10:37:43 AM f-392c05UnderstandingDesktopApplicati137 Page 137 2/26/11 10:37:43 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

138 | Lesson 5

• Visual inheritance allows you to reuse existing functionality and layout for Windows Forms.

• Multiple document interface (MDI) applications are applications in which multiple child
windows reside under a single parent window.

• Console-based applications do not have a graphical user interface and use a text-mode
console window to interact with the user. These applications are best suited for tasks that
require minimal or no user interface.

• Windows services are ideal for creating long-running applications that run in the back-
ground and do not have any user interface.

• You can create Windows services using Visual Studio’s Windows Services template.

• Before a Windows service can be used, it must be installed in Windows Registry. To do this,
add the Installer component to the Windows Service Application. This will allow you to
install the Windows service using an installation tool such as InstallUtil.exe.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. Use the _________ property of the ServiceInstaller class to specify a brief comment that
explains the purpose of the service.

 2. The _________ property of the _________ class indicates the account type under
which a Windows service will run.

 3. The _________ property of the EventLog class is used to specify the application name
to use when writing to an event log.

 4. _________ allows you to reuse existing functionality and layout for Windows Forms.

 5. _________ applications are applications in which multiple child windows reside under a
single parent window.

 6. A(n) _________ is ideal for creating long-running applications that run in the
 background and do not have any user interface.

 7. _________ do not have a graphical user interface and use a text-mode console window
to interact with the user.

 8. _________ applications provide their own window management functionality, whereas
_________ applications rely on the operating system for window management.

 9. A delegate can be bound to any method whose signature matches that of the ________.

 10. The _________ can be bound to more than one method, allowing one-to-many
 notifications when an event is fired.

■ Knowledge Assessment

c05UnderstandingDesktopApplicati138 Page 138 2/26/11 10:37:47 AM f-392c05UnderstandingDesktopApplicati138 Page 138 2/26/11 10:37:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 139

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. You need to design a Windows service that cannot be paused. Which of the following
options will help you accomplish this task?
a. Set the CanPauseAndContinue property of the Windows service to False.
b. Set the CanPauseAndContinue property of the Windows service to True.
c. Set the CanStart property of the Windows service to True, but set the CanShutdown

property to False.
d. Do not override the OnPause and OnContinue methods in the Windows service.

 2. You have developed a Windows service. You need to install this service in order to install
its functionality. Which of the following options should you choose to accomplish this
task?
a. Use the Visual Studio Server Explorer.
b. User the Services node in the Computer Management window.
c. Use InstallUtil.exe.
d. Use gacutil.exe.

 3. You have developed a Windows service. This service need to run as a nonprivileged user
in order to minimize any possible security risk. Which of the following accounts should
you use for running this Windows service?
a. LocalSystem
b. NetworkService
c. LocalService
d. User (where the UserName property is set to a member of administrator role)

 4. You are designing a Windows service application that contains only one Windows
 service. You would like this service to be started automatically when the computer is
restarted. Which of the following classes should you use to specify this setting?
a. ServiceBase
b. ServiceInstaller
c. ServiceProcessInstaller
d. ServiceController

 5. You need to change the display and behavior of a Windows Form so that the form can
contain multiple child windows. What should you do?
a. Set the IsMdiContainer property of the form to True.
b. Set the MdiParent property for all the child windows.
c. Set the MdiChild property of the form.
d. Set the IsMdiChild property of the form.

 6. You are developing a Windows Form that responds to mouse events. When the mouse
moves, you need to invoke the method Form1_HandleMouse. Any code that you write
should not affect any existing event-handling code. What statement should you use to
attach the event handler to the event?
a.
this.MouseDown = new MouseEventHandler
 (Form1_HandleMouse);
b.
this.MouseMove = new MouseEventHandler
 (Form1_HandleMouse);

c05UnderstandingDesktopApplicati139 Page 139 2/26/11 10:37:47 AM f-392c05UnderstandingDesktopApplicati139 Page 139 2/26/11 10:37:47 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

140 | Lesson 5

c.
this.MouseDown �= new MouseEventHandler
 (Form1_HandleMouse);
d.
this.MouseMove �= new MouseEventHandler
 (Form1_HandleMouse);

 7. You are developing a Windows Form with a multiple document interface (MDI). You
need to write code that arranges the child windows vertically within the client region of
the MDI parent form. Which of the following statements should you use?
a.
LayoutMdi(MdiLayout.TileVertical);
b.
LayoutMdi(MdiLayout.Cascade);
c.
MdiLayout(LayoutMdi.TileVertical);
d.
MdiLayout(LayoutMdi.Cascade);

 8. You are developing an application that will be run from the command line. Which of the
following methods would you use for output to the command line?
a. Console.Read
b. Console.Write
c. File.Read
d. File.Write

 9. You want to develop an application that displays a visual surface capable of displaying a
variety of controls, such as text boxes, buttons, and menus. The application should also
allow multiple child windows to reside under a single parent window. Which of the fol-
lowing types of application should you develop?
a. Console-based application
b. Windows service application
c. Single document interface (SDI) application
d. Multiple document interface (MDI) application

10. You are extending an existing Windows application. You would like to create a new form
that derives its visual characteristics (including size, color, and some controls) from a pre-
viously created form. Which technique should you use to create the new form?
a. Visual inheritance
b. Visual encapsulation
c. Visual abstraction
d. Visual polymorphism

■ Competency Assessment

Scenario 5-1: Using Visual Inheritance

You need to create a Windows Form similar to the one you created in the VisualInheritance
exercise. However, this time, the requirement is that the background color of this form must
match the currently selected color of the user’s desktop. How would you develop such a form?

Scenario 5-2: Handling the MouseDown Event

You are developing a game that allows users to hit a target area on a Windows Form with
their mouse. You need to develop an experimental form that displays the X and Y coordinates
of the location clicked by the user in the form’s title bar. How should you achieve this?

c05UnderstandingDesktopApplicati140 Page 140 2/26/11 10:37:48 AM f-392c05UnderstandingDesktopApplicati140 Page 140 2/26/11 10:37:48 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Desktop Applications | 141

■ Proficiency Assessment

Scenario 5-3: Working with Console Input

You are developing a program that manipulates text. You need to write a console-based appli-
cation that accepts text from the user and converts the text to upper-case letters. What code
do you need to write to meet this requirement?

Scenario 5-4: Using the Net Utility (net.exe)

The net.exe command line utility comes installed with Windows. This utility allows you to
perform various networking commands, including control of Windows services. You want
to use net.exe to work with the previously created FirstService Windows service. What steps
must you take in order to pause, stop, and start a Windows service using the net.exe utility?

c05UnderstandingDesktopApplicati141 Page 141 2/26/11 10:37:48 AM f-392c05UnderstandingDesktopApplicati141 Page 141 2/26/11 10:37:48 AM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding
Databases

LESSON6

You are a software developer for the Northwind Corporation. As part of your work,
you interact with and process data about customers, products, suppliers, and orders.
Your work involves interacting with relational databases such as Microsoft SQL Server.
However, you also work with data stored in other formats, such as flat files, XML files,
and in-memory data. To be effective at your work, you need to know how to connect to
various data sources and how to retrieve and update data in these sources.

L E S S O N S K I L L M A T R I X

SKILLS/CONCEPTS MTA EXAM OBJECTIVE MTA EXAM OBJECTIVE NUMBER

Understanding Objects Understand relational database 6.1
 management systems

Understanding Values and Understand database query methods. 6.2
References

Understanding Encapsulation Understand database connection 6.3
 methods.

■ Understanding Relational Database Concepts

THE BOTTOM LINE

A relational database is a collection of interrelated data based on the relational model
developed by E. F. Codd. This model defines distinct data entities, their attributes, and
relationships among entities.

142

K E Y T E R M S

attribute

DataSet

database

database integrity

database management
 system (DBMs)

disconnected applications

element

entity-relationship
 diagrams (ERDs)

first normal form (1NF)

flat files

functional dependence

normalization

parameterized stored
 procedures

primary key

processing instructions

relational database

relational database design

second normal form (2NF)

stored procedure

Structured Query Language (SQL)

third normal form (3NF)

Extensible Markup
 Language (XML)

c06Understanding Databases.indd Page 142 2/28/11 3:20:56 PM f-392c06Understanding Databases.indd Page 142 2/28/11 3:20:56 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 143

A database allows you to store, maintain, and retrieve important data. If a database is properly
designed, it can be used by multiple applications and by multiple users. A database manage-
ment system (DBMS), on the other hand, is software that organizes databases and provides
features such as storage, data access, security, backup, etc. Examples of popular DBMSs
include Microsoft SQL Server, Microsoft Access, Oracle, and MySql.

Database management systems can be implemented based on different models. Of these
 models, the relational model is most popular. In the relational model, data is organized
into tables, each of which can have multiple rows. DBMSs based on relational models
are called relational DBMSs (RDBMSs). SQL Server, Access, Oracle, and MySql are all
RDBMSs.

Other database management systems are based on different models. For example, object
DBMSs (ODBMSs) are based on the object model, in which data is stored as a collec-
tion of objects. In this lesson, however, we will focus solely on the more popular relational
databases.

Relational DBMSs use Structured Query Language (SQL) to retrieve and manipulate data.
Most popular relational database management systems provide some support for the stan-
dardized version of SQL, thereby allowing you to use your skills across different relational
 database systems.

Understanding Databases

A database is an organized collection of interrelated data that is managed as a single unit.

Understanding Relational Database Concepts

A relational database organizes data in two-dimensional tables consisting of columns
and rows.

A relational database organizes information into tables. A table is a list of rows and columns
that is conceptually similar to a Microsoft Excel worksheet. A row is also called a record or
tuple, and a column is sometimes called a field. The column or field specifies the type of
data that will stored for each record in the table. For example, customer orders can be stored
in an Orders table in which each row represents a unique order. In this table, columns such
as OrderDate can be used to specify that a valid value is of the correct data type. A sample
Orders table is shown in Figure 6-1.

Figure 6-1

An Orders table in a relational
database

c06Understanding Databases.indd Page 143 2/28/11 3:20:57 PM f-392c06Understanding Databases.indd Page 143 2/28/11 3:20:57 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

144 | Lesson 6

Entity-relationship modeling is a process used to create the conceptual data model
of a system, and entity-relationship diagrams are the graphical modeling tools for
 accomplishing this modeling. The basic building blocks of an ERD are entity, attribute,
and relationship:

• Entity: An entity is a construct for a physical object or a concept. Examples include an
order, a customer, an employee, and so on. An entity is generally named for the noun
that it represents.

• Attribute: Attributes are the distinct properties of an entity. For example, for an Order
entity, some useful attributes may be OrderNumber, OrderDate, ShipDate, and ShipVia.
Similarly, for an Employee entity, some useful attributes may be EmployeeId, LastName,
FirstName, Title, and HireDate. Every entity must have a set of uniquely identifying attri-
butes that is known as the entity’s primary key. For example, an OrderNumber is an attri-
bute that uniquely identifies an order, so it is therefore a primary key for the Order entity.

Understanding Entity-Relationship Diagrams

Entity-relationship diagrams (ERDs) are used to model entities, their attributes, and
the relationships among entities. Entity-relationship diagrams can help you determine
what data needs to be stored in a database.

Understanding Relational Database Design

Relational database design is the process of determining the appropriate relational
 database structure to satisfy business requirements.

An organization’s data is one of its most important assets. Thus, when you design a database,
one of the guiding principles is to ensure database integrity. Integrity means that the data in
the database is accurate and consistent at all times.

The database design process consists of the following steps:

 1. Develop a mission statement for the database: Identifies the purpose of the database,
how it will be used, and who will use it. This step sets the tone for the rest of the design
process.

 2. Determine the data that needs to be stored: Identifies all the different types of data
that need to be stored in the database. Generally, this information is collected as part of
the requirements analysis task via entity-relationship diagrams.

 3. Divide the data into tables and columns: Identifies the tables and the information that
you want to store in those tables.

 4. Choose primary keys: A primary key is a column or set of columns that uniquely
 identifies each row of data in a table.

 5. Identify relationships: Identifies how the data in one table is related to the data in another
table. For example, for each customer in a Customers table, you may have many orders in
the Orders table; this relationship is called a one-to-many relationship.

 6. Apply the normalization process: Applies data normalization rules to ensure that any
problems that may affect data integrity are resolved. You’ll learn more about the normal-
ization process later in this lesson.

After you’ve established the purpose of a database, the next set of steps (Step 2 through Step 5)
can be completed as part of entity-relationship modeling. The final step of normalization can
then be applied to the output from this modeling.

c06Understanding Databases.indd Page 144 2/28/11 3:20:59 PM f-392c06Understanding Databases.indd Page 144 2/28/11 3:20:59 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 145

• Relationship: A relationship is an association between entities. For example, Takes is a
relationship between an Employee entity and an Order entity (i.e., Employee Takes Order).

Note that ERDs don’t show single entities or single relations. For example, there may be
thousands of Order entities and hundreds of Customer entities. Instead, these diagrams show
entity sets and relationship sets—for instance, all the thousands of Order entities may make
up one entity set. In fact, when an Order or Customer appears in an ERD, it usually refers to
an entity set rather than an individual entity.

ERDs use certain design conventions. In particular:

• A rectangle represents an entity set.

• An ellipse represents an attribute.

• A diamond represents a relationship set.

• Solid lines link entity sets to relationship sets and entity sets to attributes.

Figure 6-2 shows an example ERD. In this diagram, the two entity sets are Customer and Order.
Attributes associated with Customer are ID, Name, and City. Attributes associated with Order
are OrderID, OrderDate, and ShipDate. Those attributes that form a primary key are under-
lined. Also, as shown in the figure, the relationship between Customer and Order is Places.

Figure 6-2

An entity-relationship diagram Order

OrderID

OrderDate

ShipDate

ID

Name

City

Customer Places
1 N

Within an ERD, a relationship can be classified as a one-to-one relationship, a one-to-
many relationship, or a many-to-many relationship. In Figure 6-2, the line that connects
the relationship Places with the entity set Customer is labeled “1,” whereas the line between
Places and the entity set Order is labeled “N.” This is an example of a one-to-many relation-
ship. In this relationship, one customer can place many orders, but an order can have only
one customer associated with it.

MAPPING ERDs TO A RELATIONAL DATABASE
In order to convert an ERD to a relational database, you must take following steps:

 1. Map the entities: Start by creating a table for each entity set in the diagram. The attri-
butes will become columns. Be sure to set the primary key attribute(s) to the primary
key column(s) for the table.

 2. Map the relationship: Next, map the one-to-many relationship by ensuring that the table
on the N side of the relationship contains the primary key column of the table on the 1 side
of the relationship. For Figure 6-2, this can be accomplished by adding a CustomerID column
in the Order table that maps to the ID column of the Customer table. In the context of the
Order table, the CustomerID is also called a foreign key. By adding this column in the Order
table, it is possible to answer questions such as “What are all the orders placed by a specific
customer?” and “Who is the customer for a specific order?”

c06Understanding Databases.indd Page 145 2/28/11 3:20:59 PM f-392c06Understanding Databases.indd Page 145 2/28/11 3:20:59 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

146 | Lesson 6

When mapped to a relational database, the ERD in Figure 6-2 generates the following tables:

Books

BOOKID BOOKNAME CATEGORYID CATEGORYNAME

1 Cooking Light 1001 Cooking

2 Prophecy 1002 Mystery & Thriller

3 Shift 1003 Business

4 The Confession 1002 Mystery & Thriller

ID NAME CITY

1001 Jane Doe Berlin

1002 John Doe Tokyo

1003 Howard Steel Sydney

Customers

ORDERID CUSTOMERID ORDERDATE SHIPDATE

101 1001 10/1/2010 10/7/2010

102 1002 10/5/2010 10/10/2010

103 1001 10/4/2010 10/10/2010

Orders

Entity-relationship analysis helps you ensure that you’ve identified the correct data items for
your database. Then, through the process of data normalization, you apply a set of normaliza-
tion rules to make sure that you have established the correct database design—that is, you
check whether the columns belong to the right tables in order to ensure that your database is
free of any undesirable problems.

For example, as part of entity-relationship analysis, you may come up with a Books table that
has the following columns:

Understanding Data Normalization

The process of data normalization ensures that a database design is free of any problems
that could lead to loss of data integrity.

However, this design for the Books table suffers from three problems:

• Insert anomaly: An insert anomaly is a situation in which you cannot insert new data
into a database because of an unrelated dependency. For example, if you want your
database to have a new CategoryId and CategoryName for history books, the current
design will not permit that unless you first have a history book to place in that category.

c06Understanding Databases.indd Page 146 2/28/11 3:21:02 PM f-392c06Understanding Databases.indd Page 146 2/28/11 3:21:02 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 147

For this table to be in 1NF, you would need to break the table in two:

• Delete anomaly: A delete anomaly is a situation in which the deletion of one piece of data
causes unintended loss of other data. For example, if you were to delete the BookId 3 from
the Books table, the very fact that you ever had a CategoryName of Business would be lost.

• Update anomaly: An update anomaly is a situation in which updating a single data
value requires multiple rows to be updated. For example, say you decide to change
the Mystery & Thriller category name to just Mystery. With the current table design,
you’ll have to change the category name for every book in that category. There is also a
risk that if you update the category name in one row, but not the others, you’ll end up
 having inconsistent data in the database.

Each of these problems can be fixed by following the normalization process. There are five
normal forms that are used as part of this process; however, this lesson only discusses the first
three, because they are all that is required in most cases.

UNDERSTANDING THE FIRST NORMAL FORM
In order for a table to be in the first normal form (1NF), none of the columns in the table
should have multiple values in the same row of data. For example, if a Customers table stores
data as shown below, this table is not in 1NF because the PhoneNumber column is storing
more than one value in each row.

Customer

ID FIRSTNAME LASTNAME

1 Jane Doe

2 John Doe

3 Howard Steel

CustomerPhones

ID PHONENUMBER

1 (503) 555-6874

2 (509) 555-7969

2 (509) 555-7970

3 (604) 555-3392

3 (604) 555-3393

Customer

ID FIRSTNAME LASTNAME PHONENUMBER

1 Jane Doe (503) 555-6874

2 John Doe (509) 555-7969,
 (509) 555-7970

3 Howard Steel (604) 555-3392,
 (604) 555-3393

Normalization can help
you ensure a correct
database design, but it
cannot ensure that you
have the correct data
items to begin with.

TAKE NOTE*

A general convention is
to underline the name
of the columns in a
table that are part of the
primary key.

TAKE NOTE*

c06Understanding Databases.indd Page 147 2/28/11 3:21:02 PM f-392c06Understanding Databases.indd Page 147 2/28/11 3:21:02 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

148 | Lesson 6

In contrast, consider the following table:

2NF only applies to tables that have composite primary keys (i.e., multiple columns
together make up the primary key). The combined values of all fields in a composite
 primary key must be unique. If a table satisfies 1NF and has only a single column in its
primary key, then the table also conforms to 2NF.

TAKE NOTE*

UNDERSTANDING THE SECOND NORMAL FORM
For a table to be in second normal form (2NF), it must first meet the requirements for 1NF.
In addition, 2NF requires that all non-key columns are functionally dependent on the entire
primary key.

In order to understand 2NF, you must first understand functional dependence. Let’s take the
example of the Customers table above. In the Customers table, the Id column is the primary
key because it uniquely identifies each row. The columns FirstName and LastName are non-
key columns, because they are not part of the primary key. Both FirstName and LastName are
functionally dependent on Id because, given a value of Id, you can always find a value for the
corresponding FirstName and LastName without any ambiguity. There is no non-key column
in the Customers table that does not functionally depend on the primary key. The Customers
and CustomerPhones table are therefore already in 2NF.

Orders

ORDERID CUSTOMERID ORDERDATE CUSTOMERNAME

101 1 10/1/2010 Jane Doe

102 2 10/5/2010 John Doe

103 1 10/4/2010 Jane Doe

Here, the Customers table and the CustomerPhones table are both in 1NF. Both tables have a
primary key (Id in the first table and the combination of Id and PhoneNumber in the second
table) that establishes a relationship between them. Given any Id for a customer, you can find
all phone numbers for that customer without any confusion. On the other hand, LastName is
not a primary key because a last name may have duplicate entries.

Creating repeating columns such as PhoneNumber1 and PhoneNumber2 to normalize the
Customer table would not be an acceptable solution because the first normalization form
does not allow such repeating columns.

TAKE NOTE*

Here, the OrderId and CustomerId columns together identify a unique row and therefore
make up a composite primary key. However, the column OrderDate is functionally depen-
dent only on OrderId, and the column CustomerName is dependent only on CustomerId.
This violates the 2NF because the non-key columns are functionally dependent on only part
of the primary key.

One possible way you could modify the Orders table to conform to 2NF is to take
CustomerName out of the table and have only three columns—OrderId, CustomerId, and
OrderDate—with only OrderId serving as the primary key. In this solution, both CustomerId
and OrderDate are functionally dependent on OrderId and thus conform to 2NF.

c06Understanding Databases.indd Page 148 2/28/11 3:21:02 PM f-392c06Understanding Databases.indd Page 148 2/28/11 3:21:02 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 149

ITEMID SUPPLIERID

101 100

102 11

103 525

Items

SUPPLIERID REORDERFAX

100 (514) 555-2955

11 (514) 555-9022

525 (313) 555-5735

Supplier

CERTIFICATION READY
Do you understand
the basics of relational
database management
systems?
6.1

SQL is the language used by most database systems to manage the information in their data-
bases. SQL commands permit you to retrieve and update data. SQL commands also let you
create and manage database objects such as tables. SQL may be thought of as a programming
language for relational databases. However, SQL is declarative in nature, as opposed to the
imperative nature of most common programming languages.

■ Understanding Database Query Methods

THE BOTTOM LINE

Data is at the core of many business applications, and, as a developer, you will likely
spend a lot of time working on data-related tasks. In this section, you will learn how to
use Structured Query Language (SQL) and SQL Server-stored procedures to select, insert,
update, and delete data.

UNDERSTANDING THE THIRD NORMAL FORM
The third normal form (3NF) requires that 2NF is met and that there is no functional depen-
dency between non-key attributes. In other words, each non-key attribute should be depen-
dent on only the primary key and nothing else. For example, consider the following table:

Items

ITEMID SUPPLIERID REORDERFAX

101 100 (514) 555-2955

102 11 (514) 555-9022

103 525 (313) 555-5735

Here, ItemId is the primary key. However, ReorderFax is a fax number for the supplier and is there-
fore functionally dependent on SupplierId. To satisfy the requirement of 3NF, this table should be
decomposed into two tables: Items (ItemId, SupplierId) and Supplier (SupplierId, ReorderFax).

c06Understanding Databases.indd Page 149 2/28/11 3:21:02 PM f-392c06Understanding Databases.indd Page 149 2/28/11 3:21:02 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

150 | Lesson 6

Using ad-hoc SQL queries is a flexible way to work with a SQL Server database. In this
 portion of the lesson, you’ll learn the basics about the four main types of SQL statements that
help you manipulate SQL Server data:

• SELECT statements allow you to retrieve data stored in a database.

• INSERT statements allow you to add new data to a database.

• UPDATE statements allow you to modify existing data in a database.

• DELETE statements allow you to delete data from a database.

Working with SQL Queries

SELECT, INSERT, UPDATE, and DELETE statements are the four main types of SQL
statements used to manipulate SQL Server data.

CONNECTING TO A SQL SERVER DATABASE

You need to connect to a SQL Server database before you can manipulate any informa-
tion in that database.

In this exercise, you’ll learn how to work with a Microsoft SQL Server database. If you don’t have
access to a recent version of SQL Server, you can download SQL Server 2008 Express for free
from www.microsoft.com/express/database. This exercise uses the SQL Server sample database
Northwind. This database is not installed by default with SQL Server, but you can download the
database file by following the instructions at www.msdn.com/en-us/library/ms143221.aspx.

Complete the following exercise to connect to and use the Northwind database with Visual
Studio.

CONNECT TO THE NORTHWIND DATABASE

GET READY. Before you begin these steps, be sure to launch Microsoft Visual Studio.

 1. Open the Server Explorer window. Select the Data Connections node, then click
the Connect to Database button on the Server Explorer toolbar.

In Visual Studio Express Edition, the Server Explorer window is called Database Explorer,
and it can be opened by selecting View > Other Windows > Database Explorer.

TAKE NOTE*

In SQL, you tell the database what needs to done, and it’s the database’s job to figure out
how to do it—for example, you can tell the database to select the first 10 rows from a table.
Compare this with an imperative programming language such as C#, in which you need to
specify in detail how the work is to be performed. For example, you might need to create a
loop that runs ten times, set up and initialize variables, move record pointers, and so on.

SQL is an ANSI (American National Standards Institute) standard, but different database
vendors have implemented their own extensions to standard SQL. Microsoft SQL Server’s
implementation of SQL is called Transact-SQL (T-SQL).

There are two main ways to submit T-SQL to SQL Server. You can either use ad-hoc SQL
statements that are executed directly, or you can use stored procedures. Stored procedures are
collections of SQL statements and programming logic that are stored on the database server
as named objects.

c06Understanding Databases.indd Page 150 2/28/11 3:21:02 PM f-392c06Understanding Databases.indd Page 150 2/28/11 3:21:02 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 151

 3. Use Windows Authentication as the authentication mode, and click the Test

Connection button to make sure you can connect to the database. Finally, click the
OK button to add the connection to the database.

 4. Once the connection is established, the database is available as a connection under
the Data Connections node in Server Explorer. Expand the database to see the tables,
stored procedures, and other database objects, as shown in Figure 6-4.

 2. In the Add Connection dialog box, browse to the database file for the Northwind
database (northwnd.mdf), as shown in Figure 6-3.

Figure 6-3

Connecting to the Northwind
database

Figure 6-4

Accessing the Northwind data-
base through Server Explorer

c06Understanding Databases.indd Page 151 2/28/11 3:21:03 PM f-392c06Understanding Databases.indd Page 151 2/28/11 3:21:03 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

152 | Lesson 6

Figure 6-5

Properties window for the
Northwind database

RUNNING SQL QUERIES

There are many ways to communicate with SQL Server in order to run database queries.

There are many ways in which you can send queries to a SQL Server. For example, you can
use any of the following:

• Visual Studio Integrated Development Environment (IDE)

• C# application

• SQL Query Analyzer

• osql command prompt utility

Note that SQL Query Analyzer and osql command prompt utilities are tools installed with
SQL Server.

RUN QUERIES FROM VISUAL STUDIO

GET READY. To use Visual Studio IDE and C# applications to run SQL queries, perform
these steps:

 1. Select the Northwind database in the Server Explorer. Right-click the database and
select New Query. This action opens a Query Designer and shows an Add Table dialog
box. Select the Customers table and click Add. Click Close in the Add Table dialog box.

 2. In the SQL pane of the Query Designer (which is the area that displays the text of the
query), modify the SQL statement to the following:

 SELECT * FROM Customers

 3. From the Visual Studio menu, select the Query Designer > Execute SQL option, or
click on the Execute SQL button in the toolbar. The SQL statement will be sent to the
SQL server for execution, and results like those in Figure 6-6 should be displayed.

 5. Right-click the NORTHWND.MDF node and select Properties. You should see the
Properties window shown in Figure 6-5. In this window, notice the Connection String
property. You’ll use the value of this property to connect to the Northwind database
from a C# application.

PAUSE. You will access data from the Northwind database in the next exercise.

c06Understanding Databases.indd Page 152 2/28/11 3:21:07 PM f-392c06Understanding Databases.indd Page 152 2/28/11 3:21:07 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 153

The Query Designer in Visual Studio displays up to four panes. From top to bottom, the
panes are as follows:

• Diagram pane: This pane displays the tables involved in the query and the relationships
among these tables, as well as all the columns that the tables contain.

• Criteria pane: The Criteria pane shows the columns that have been selected as part of
the query, as well as additional sorting and filtering information.

• SQL pane: This pane shows the actual SQL statement that will be executed.

• Results pane: The Results pane shows the results (if any) after the query has been executed.

The Query Designer toolbar includes buttons that you can use to hide or show any of these
four panes. For the following exercise, you need only the SQL pane and the Results pane.

RUN QUERIES FROM C# APPLICATION

GET READY. To run queries from C# applications, do the following:

 1. Create a new Windows Application project named QueryCS.

 2. To the Windows Form, add a TextBox control, a Button control, and a DataGridView
control. Set the MultiLine property of the TextBox to True. Set the Text property of
the Button control to Execute SQL.

 3. Double-click the Button control to generate an event handler for its Click event.
Modify the event handler as shown below:

private void button1_Click(

 object sender, EventArgs e)
{
 if (textBox1.TextLength > 0)
 {
 SelectData(textBox1.Text);
 }

}

Figure 6-6

Visual Studio Query Designer

c06Understanding Databases.indd Page 153 2/28/11 3:21:10 PM f-392c06Understanding Databases.indd Page 153 2/28/11 3:21:10 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

154 | Lesson 6

 4. Add the following method to the class. Be sure to change the connection string to
match the local path of the database file on your computer:

private void SelectData(string selectCommandText)

{

 try

 {

 // Change the connection string

 // to match with your system.

 string selectConnection =

 @"Data Source=.\SQLEXPRESS;" +

 @"AttachDbFilename=" +

 @"c:\SqlSampleDB\NORTHWND.MDF;" +

 @"Integrated Security=True;" +

 @"Connect Timeout=30;User Instance=True";

 SqlDataAdapter dataAdapter =

 new SqlDataAdapter(

 selectCommandText, selectConnection);

 DataTable table = new DataTable();

 dataAdapter.Fill(table);

 dataGridView1.DataSource = table;

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

}

 5. Add the following using directives to the code:

using System.Data;

 using System.Data.SqlClient;

 Select Debug > Start Debugging to run the project. Enter a valid SQL query and click
on the Button control. You should see the output shown in Figure 6-7.

Figure 6-7

Running queries from a
C# application

c06Understanding Databases.indd Page 154 2/28/11 3:21:12 PM f-392c06Understanding Databases.indd Page 154 2/28/11 3:21:12 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 155

The code in this exercise implements a SelectData method that initializes a SqlDataAdapter
object and uses it to populate a DataTable. The DataTable is then bound as a data source
for the DataGridView component. The SqlDataAdapter object acts as a pipeline between
SQL Server and the DataTable for retrieving data. The Fill method changes the data in the
DataTable to match the data in the data source. The selectCommandText is used to identify
the data in the data source.

The SELECT statement generally takes the following form:

SELECT list_of_fields

FROM list_of_tables

WHERE where_clause

GROUP BY group_by_clause

HAVING having_clause

ORDER BY order_by_clause

Each of these lines of code in the SELECT statement is called a clause. The SELECT and
FROM clauses are required, but the rest are optional. For example, here’s a SQL statement
that contains only the required clauses:

SELECT OrderId, CustomerId

FROM Orders

If you want to list all the fields from a table, you can also use the following shortcut instead
of explicitly listing all the fields:

SELECT *

FROM Orders

In addition, you can select information from multiple tables; for example:

Select OrderId, Customers.CustomerId, ContactName

From Orders, Customers

Customers.CustomerId is known as a fully qualified name because it specifies both the table
name and field name. This is necessary because both the Orders table and the Customers
table include this field, so you must tell SQL Server which particular table you want to
refer to.

If you run this query, you will get a lot more records than you might expect. This happens
because, although you told SQL Server what tables to include, you didn’t include any infor-
mation on how to relate those tables. As a result, SQL Server constructs the result set to
include all rows of the Customer table for every row of the Orders table. This kind of join is
called a cross join, and it is not very helpful in this case.

A more useful query, of course, would match each order with the corresponding customer.
The INNER JOIN keyword can help you accomplish this, as shown in the following query:

SELECT OrderID, Customers.CustomerId, ContactName

FROM Orders INNER JOIN Customers

ON Orders.CustomerId = Customers.CustomerId

SELECTING DATA

The SELECT statement is used to retrieve data from one or more database tables.

c06Understanding Databases.indd Page 155 2/28/11 3:21:14 PM f-392c06Understanding Databases.indd Page 155 2/28/11 3:21:14 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

156 | Lesson 6

This query tells SQL Server to take each row in the Orders table and match it with all rows
in the Customers table in which the CustomerId of the order equals the CustomerId of the
customer. Because CustomerId is unique in the Customers table, this is the same as including
only a single row for each order in the result set. In this case, the result set will have as many
rows as there are rows in the Orders table.

But what if you want to see only some of the rows in the table? In this situation, you can
use the WHERE clause. The WHERE clause evaluates each row for a condition and decides
whether to include it in the result set. For example:

SELECT *

FROM Orders

WHERE ShipCountry = 'Canada'

Here, the WHERE clause looks at every row in the Orders table to see whether the
ShipCountry has the exact value “Canada.” If it does, the row is included in the result set; if
it does not, the row is not included in the result set.

You can also combine multiple conditions in a single WHERE clause. For example:

SELECT *

FROM Orders

WHERE (ShipCountry = 'Canada')

AND (OrderDate >= '01/01/97')

AND (OrderDate <= '01/31/97')

Here, the WHERE conditions filters the orders in which the ShipCountry is “Canada” and
the order date is in January 1997.

By default, SQL does not guarantee the results to be in a particular order. However, you can
use the ORDER BY clause to ensure that your desired data is returned in a particular order.
For example, to list the orders based on their order date, you can use the following query:

SELECT *

FROM Orders

WHERE (ShipCountry = 'Canada')

AND (OrderDate >= '01/01/97')

AND (OrderDate <= '01/31/97')

ORDER BY OrderDate

You can modify the sort order by using either the keyword ASC (for ascending order) or
the keyword DESC (for descending order). The default sort order is ascending. Thus, the
 following query lists the most recent orders at the top:

SELECT *

FROM Orders

WHERE (ShipCountry = 'Canada')

AND (OrderDate >= '01/01/97')

AND (OrderDate <= '01/31/97')

ORDER BY OrderDate DESC

The standard delimiter
for text and dates in
SQL Server is the single
quotation mark.

TAKE NOTE*

c06Understanding Databases.indd Page 156 2/28/11 3:21:14 PM f-392c06Understanding Databases.indd Page 156 2/28/11 3:21:14 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 157

It is quite common for business applications to request aggregate or summarized data. Such
requirements can be addressed using the GROUP BY clause and the aggregate functions. For
example, you can use the following query to find which countries you ship most of your orders to:

SELECT ShipCountry, COUNT(ShipCountry) AS OrderCount

FROM Orders

GROUP BY ShipCountry

ORDER BY OrderCount DESC

This will display the name of each country followed by the total number of orders shipped to
that country. The ORDER BY clause sorts the result and places the countries with the most
orders at the top of the list.

You can think of the GROUP BY clause as creating “buckets”—in this case, one for each country.
As the database engine examines each record, it tosses it in the appropriate bucket. After this pro-
cess is complete, the database engine counts the number of records that ended up in each bucket
and outputs a row for each one. Figure 6-8 shows the start of the result set from this query.

Figure 6-8

Summarizing information using
the GROUP BY clause

In the previous SQL statement, Count is an aggregate function—that is, it returns a result
based on a group of rows. T-SQL supports a number of different aggregate functions. Some
of the most common are as follows:

• Count: Returns the number of records

• Sum: Returns the total value in a given column

• Avg: Returns the average value in a given column

• Min: Returns the smallest value in a given column

• Max: Returns the largest value in a given column

UPDATING DATA

The UPDATE statement is used to update information in database tables.

Another useful SQL statement is the UPDATE statement. The purpose of an UPDATE
statement is to update or modify data. For example, you can update a field in a record in the
Customers table using the following query:

UPDATE Customers

SET ContactName = 'Maria Anderson'

WHERE CustomerId = 'ALFKI'

c06Understanding Databases.indd Page 157 2/28/11 3:21:14 PM f-392c06Understanding Databases.indd Page 157 2/28/11 3:21:14 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

158 | Lesson 6

In this query, the SET keyword tells SQL Server which columns to update, and the WHERE
keyword tells it which rows to update. In the Customers table, CustomerId is a primary key
and is uniquely identified a single row. Therefore, this UPDATE statement can update one
row at most.

Note, however, that you are not limited to updating just a single record. Rather, if the
WHERE clause selects multiple records, all of these records will be updated:

UPDATE Customers

SET Country = 'United States'

WHERE Country = 'USA'

You can also update more than one field at a time with an UPDATE statement, as in the
 following example:

UPDATE Customers

SET ContactName = 'Maria Anderson',

CITY = 'Tokyo'

WHERE CustomerId = 'ALFKI'

In an UPDATE state-
ment, the SET clause
is required and can be
specified only once.

TAKE NOTE*

It is highly
 recommended that you
carefully review the
WHERE clause for each
UPDATE statement.
If you are not careful,
you may update data
for more rows than you
intend.

TAKE NOTE*

INSERTING DATA

The INSERT statement is used to add one or more rows to a database table.

The INSERT statement lists the fields for the target table followed by a set of values to insert in
these fields. For example, the following INSERT statement inserts a row in the Order Details table:

INSERT INTO [Order Details]

(OrderId, ProductId, UnitPrice, Quantity, Discount)

VALUES (10248, 2, 19.00, 2, 0)

Square brackets are required when the names of tables or fields contain spaces. Here, the first
set of parentheses holds a column list, and the second set holds the values to insert. If a field
has a default value, can be null, or is an identity field, you can leave it out of the field list, as
in the following example:

INSERT INTO [Order Details]

(OrderId, ProductId, UnitPrice, Quantity)

VALUES (10249, 2, 19.00, 2)

This statement works even though no value was specified for the field Discount. Also, with
this statement, you can rearrange a field list as long as you rearrange the value list to match:

INSERT INTO [Order Details]

(ProductId, OrderId, UnitPrice, Quantity)

VALUES (2, 10250, 19.00, 2)

The INSERT statement isn’t limited to inserting a single record. In fact, there’s a second
format that inserts the results of a SELECT statement into the target table. For example,
this query inserts a product from every supplier into the Products table:

INSERT INTO Products

(SupplierId, ProductName, CategoryId)

SELECT SupplierId, 'Almond', 7

FROM Suppliers

c06Understanding Databases.indd Page 158 2/28/11 3:21:16 PM f-392c06Understanding Databases.indd Page 158 2/28/11 3:21:16 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 159

The DELETE statement removes data from a table. For practice purposes and to avoid
deleting data from the same database, you can copy a table using a SELECT statement, as
in the following example:

SELECT * INTO CustomersCopy

FROM Customers

This statement selects all records from the Customers table and copies them to a new table
named CustomersCopy.

To delete a single row of data from the CustomersCopy table, you would use the following
DELETE statement:

DELETE FROM CustomersCopy

WHERE CustomerId = 'ALFKI'

Be careful, because if you omit the WHERE clause, you will delete all data from the table:

DELETE FROM CustomersCopy

This query works by building the results of the SELECT statement and then putting each
row returned by the SELECT statements into the target table. Of course, the columns still
need to match properly.

In contrast to ad hoc queries, stored procedures are queries that are stored permanently on
a SQL Server. You can think of stored procedures as the SQL equivalent of C# methods.

Stored procedures have two main benefits. First, you can use them to save complex SQL
statements for future execution. Second, SQL Server compiles stored procedures so that they
run faster than ad hoc queries. In this section of the lesson, you’ll learn how to create and run
stored procedures.

CREATING AND RUNNING A STORED PROCEDURE
The CREATE PROCEDURE command can be used to create a new stored procedure.

You can use T-SQL’s CREATE PROCEDURE keyword to create a stored procedure. You can
run the CREATE PROCEDURE statement from any interface that allows you to enter and
execute T-SQL.

DELETING DATA

The DELETE statement is used to remove information from database tables.

Working with Stored Procedures

A stored procedure is a set of SQL statements that is stored in a database. Stored procedures
can be used by multiple applications.

c06Understanding Databases.indd Page 159 2/28/11 3:21:16 PM f-392c06Understanding Databases.indd Page 159 2/28/11 3:21:16 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

160 | Lesson 6

CREATE A STORED PROCEDURE FROM VISUAL STUDIO

GET READY. To create a stored procedure from Visual Studio, perform the following actions:

 1. Open Server Explorer and select the Northwind database. Right-click the Stored

Procedure node and select the Add New Stored Procedure option.

 2. In the stored procedure designer, replace the boilerplate text with the following code:

 CREATE PROCEDURE GetCustomersFromFrance

 AS

 SELECT * FROM Customers

 Where Country = 'France'

 RETURN

 3. Save the stored procedure. The stored procedure is now added to the database.

 4. To execute the stored procedure, right-click the stored procedure in the Server

Explorer and select Execute. The result from the stored procedure should be displayed
in the Output window.

 5. You can also execute this stored procedure from the QueryCS project that you created
earlier. Here, instead of a SQL statement, just type the name of the stored procedure
and click the Execute SQL button. The result from the stored procedure will be dis-
played on the Windows Form.

The ability to pass parameters significantly increases the power of stored procedures. The
parameter values can be supplied at runtime to the stored procedures.

Say that you want to find out the total sales for a given customer in the Northwind database.
In this situation, you should be able to specify the CustomerId at runtime.

CREATE A PARAMETERIZED STORED PROCEDURE

GET READY. To create a parameterized stored procedure, take the following actions:

 1. Open Server Explorer and select the Northwind database. Right-click the Stored
Procedure node and select the Add New Stored Procedure option.

 2. In the stored procedure designer, replace the boilerplate text with the following
code:

 CREATE PROCEDURE dbo.GetCustomerSales

 (

 @CustomerId char(5),

 @TotalSales money OUTPUT

)

WORKING WITH PARAMETERIZED STORED PROCEDURES

Parameterized stored procedures allow you to pass runtime arguments to the SQL Server.

You can use the ALTER
PROCEDURE state-
ment to modify the
definition of an existing
stored procedure.

TAKE NOTE*

c06Understanding Databases.indd Page 160 2/28/11 3:21:16 PM f-392c06Understanding Databases.indd Page 160 2/28/11 3:21:16 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 161

 AS

 SELECT @TotalSales = SUM(Quantity * UnitPrice)

 FROM (Customers INNER JOIN Orders

 ON Customers.CustomerId = Orders.CustomerId)

 INNER JOIN [Order Details]

 ON Orders.OrderId = [Order Details].OrderId

 WHERE Customers.CustomerId = @CustomerId

 RETURN

 3. Save the stored procedure. The stored procedure is now added to the database.

In this stored procedure, both @CustomerId and @TotalSales are parameters. @CustomerId
is an input parameter; you must supply a value for this parameter when you run the stored
procedure. @TotalSales is an output parameter; it returns a value from the stored procedure.
When you run this stored procedure from Visual Studio, you get a dialog box prompting you
to enter the value for all the parameters, as shown in Figure 6-9.

Figure 6-9

The Run Stored Procedure
dialog box prompts for the
parameter values

To run this stored procedure, enter ALFKI as the value for @CustomerId and enter NULL as
the value for @TotalSales. When you press the OK button, the calculated value of the output
parameter, @TotalSales, is displayed in the Output window.

You cannot, however, run a parameterized stored procedure from the QueryCS project,
because the code there can’t accept parameters.

RUN PARAMETERIZED STORED PROCEDURES FROM C#

GET READY. To run parameterized stored procedures from C#, perform the following tasks:

 1. Create a new Windows Application project named ParameterizedSP.

 2. Place a Label control on the form and set its Text property to "Customer Id:". Place
a TextBox control next to it and name the control as CustomerIdTextBox. Next, place
a Button control and set its Name property as GetTotalSalesButton and the Text
property a "Get Total Sales." Finally, place a Label control on the form and name it as
TotalSalesLabel. Arrange the controls so they look similar to Figure 6-10.

c06Understanding Databases.indd Page 161 2/28/11 3:21:16 PM f-392c06Understanding Databases.indd Page 161 2/28/11 3:21:16 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

162 | Lesson 6

 3. Double-click the Button control to generate an event handler for its Click event.
Modify the event handler as shown below:

private void GetTotalSalesButton_Click(

 object sender, EventArgs e)

{

 TotalSalesLabel.Text = String.Format(

 "Total Sales: {0}",

 GetTotalSales(CustomerIdTextBox.Text));

}

 4. Add the following method to the class. Be sure to change the connection string to
match the local path of the database file on your computer:

private double GetTotalSales(string customerId)

{

 double totalSales = −1;

 try

 {

 // Change the connection string

 // to match with your system.

 string connectionString =

 @"Data Source=.\SQLEXPRESS;" +

 @"AttachDbFilename=" +

 @"c:\SqlSampleDB\NORTHWND.MDF;" +

 @"Integrated Security=True;" +

 @"Connect Timeout=30;User Instance=True";

 SqlConnection connection =

 new SqlConnection(connectionString);

 SqlCommand command =

 connection.CreateCommand();

 command.CommandType =

 CommandType.StoredProcedure;

 command.CommandText = "GetCustomerSales";

 command.Parameters.AddWithValue(

 "@CustomerId", customerId);

 command.Parameters.AddWithValue(

 "@TotalSales", null);

 command.Parameters["@TotalSales"].DbType

 = DbType.Currency;

 command.Parameters["@TotalSales"].Direction

 = ParameterDirection.Output;

 connection.Open();

 command.ExecuteNonQuery();

c06Understanding Databases.indd Page 162 2/28/11 3:21:18 PM f-392c06Understanding Databases.indd Page 162 2/28/11 3:21:18 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 163

 totalSales = Double.Parse(

 command.Parameters["@TotalSales"]

 .Value.ToString());

 connection.Close();

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 return totalSales;

}

 5. Add the following using directives to the code:

using System.Data;

using System.Data.SqlClient;

 Select Debug > Start Debugging to run the project. Enter a valid CustomerId. You
should see the output shown in Figure 6-10.

If you add a new row to a table with an identity column, you can use the SQL Server vari-
able @@IDENTITY to retrieve the value of the identity column for the newly created row.

TAKE NOTE*

The previous code has the following lines:

connection.Open();

command.ExecuteNonQuery();

totalSales = Double.Parse(

 command.Parameters["@TotalSales"]

 .Value.ToString());

connection.Close();

Here, you first open the database connection, do what you need to do with the connection,
and then close the connection. The object that holds references to the database connection
uses a lot of system resources and is therefore costly to run. Accordingly, it is recommended
that you close this object as soon as you are done using it. If you don’t close the connection,
you are creating a memory leak in the program that could impact its performance.

In the code, parameters are represented by SqlParameter objects. The code works by setting
the value for the @CustomerId parameter, executing the SqlCommand object corresponding
to the stored procedure, and then retrieving the Value property of the @TotalSales parameter.

Figure 6-10

Running parameterized
stored procedures from a
C# application

c06Understanding Databases.indd Page 163 2/28/11 3:21:18 PM f-392c06Understanding Databases.indd Page 163 2/28/11 3:21:18 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

164 | Lesson 6

C# also gives you a using statement that can help ensure that costly objects such as database
connections are automatically closed when you are done with them. Here is an alternate
version of the above code that makes use of the using statement to automatically close the
database connection:

// disposing objects with using statement

using (connection)

{

 connection.Open();

 command.ExecuteNonQuery();

 totalSales = Double.Parse(

 command.Parameters["@TotalSales"]

 .Value.ToString());

}

Note that the using statement defines a scope for the connection object. When the code
reaches the end of that scope, the connection object is automatically closed, and all resources
are released.

The object used with
the using statement
must implement the
IDisposable interface.

TAKE NOTE*

CERTIFICATION READY
Do you understand
database connection
methods?
6.3

CERTIFICATION READY
Do you understand the
various database query
methods?
6.2

■ Understanding Database Connection Methods

Business applications may require data in various formats. For example, you may need to
work with flat files, XML files, and in-memory objects.THE BOTTOM LINE

The .NET Framework provides classes that are optimized for working with flat files, XML
files, and in-memory objects. The data stored inside flat files can be handled by using the
classes in the System.IO namespace. To work with XML data, the classes in the System.Xml
namespace can be used. Finally, to work with in-memory objects such as a DataSet, classes
in the System.Data namespace are used. You will learn more about how to work with each of
these data formats in the following sections.

Working with Flat Files

A flat file is a database table that is stored inside a stand-alone disk file.

A flat file usually contains one row of data per line, and the columns are separated by delimiters
such as commas or have a fixed length. The data in a flat file can be plain text or binary.
These files are called “flat files” to distinguish them from more structured forms of storage,
such as relational databases and XML files.

Historically, before the advent of modern databases, flat files were a popular way to store and
organize information. Flat files are still useful today, although only in limited scenarios rather
than as general-purpose databases. Some of the places in which flat files are used are operating
system or application configuration files, when transferring data to remote systems, and when
migrating data between noncompatible systems.

File-based input and output in the .NET Framework revolves around the concept of streams
and backing store. A stream is a flow of raw data, and a backing store is the source or destina-
tion of the stream. A backing store might be a disk file, memory, network connection, etc. You
can find classes for working with streams and backing stores in the System.IO namespace.

c06Understanding Databases.indd Page 164 2/28/11 3:21:20 PM f-392c06Understanding Databases.indd Page 164 2/28/11 3:21:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 165

As previously mentioned, flat files can be in either plain-text or binary format. Text files are
often organized as lines of text separated by end-of-line characters. The StreamReader and
StreamWriter classes provide you with an easy way to manipulate such text files.

Binary files store their content as a sequence of bytes. Although binary files are not human-
readable like text files, they are capable of storing a variety of data, such as images, sounds,
video, etc. You will always need a computer program to interpret the contents of a binary
file. The BinaryReader and BinaryWriter classes provide you with an easy way to manipulate
binary files.

In the following exercise, you select columns from the Customers table and write them to a
text file. Later, you open this text file and display its contents in the Console window.

READ FROM AND WRITE TO A TEXT FILE

GET READY. To read from and write to a text file, do the following:

 1. Create a new Console Application project named WorkingWithTextFiles.

 2. Add the following code to the Program class. You will need to correct the path to
your Northwind database in the code:

static void Main(string[] args)

{

 string myDocumentsPath =

 Environment.GetFolderPath(

 Environment.SpecialFolder.MyDocuments);

 CopyDataToTextFile(myDocumentsPath

 + @"\CustomerList.txt");

 DisplayTextFile(myDocumentsPath

 + @"\CustomerList.txt");

}

static private void CopyDataToTextFile(

 string fileName)

{

 try

 {

 // Change the connection string

 // to match with your system.

 string connectionString =

 @"Data Source=.\SQLEXPRESS;" +

 @"AttachDbFilename=" +

 @"c:\SqlSampleDB\NORTHWND.MDF;" +

 @"Integrated Security=True;" +

 @"Connect Timeout=30;User Instance=True";

 SqlConnection connection =

 new SqlConnection(connectionString);

 SqlCommand command =

 connection.CreateCommand();

c06Understanding Databases.indd Page 165 2/28/11 3:21:20 PM f-392c06Understanding Databases.indd Page 165 2/28/11 3:21:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

166 | Lesson 6

 command.CommandText =

 "SELECT CustomerId, CompanyName,"

 + "ContactName, Phone FROM Customers";

 using (connection)

 {

 connection.Open();

 SqlDataReader reader =

 command.ExecuteReader();

 using (StreamWriter sw =

 new StreamWriter(fileName))

 {

 while (reader.Read())

 {

 string customerRow =

 String.Format("{0}, {1}, {2}, {3}",

 reader.GetValue(0),

 reader.GetValue(1),

 reader.GetValue(2),

 reader.GetValue(3));

 sw.WriteLine(customerRow);

 }

 }

 }

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

}

static void DisplayTextFile(string fileName)

{

 try

 {

 using (StreamReader sr =

 new StreamReader(fileName))

 {

 string line;

 while ((line = sr.ReadLine()) != null)

 {

 Console.WriteLine(line);

 }

 }

 }

c06Understanding Databases.indd Page 166 2/28/11 3:21:20 PM f-392c06Understanding Databases.indd Page 166 2/28/11 3:21:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 167

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

}

 3. Add the following using directives to your code:

using System.Data.SqlClient;

 using System.IO;

 4. Build and run the program. Check the My Documents folder for the file name
CustomerList.txt and verify that the customer data has been written. Also verify the
output on the Console window against the contents of the file.

The code in this exercise first opens a new StreamWriter object and calls its WriteLine method
multiple times to write text to a text file. It then creates a StreamReader object to read text
from the file that was just created by using the ReadLine method. When there is no data left
to read, the ReadLine object returns a null value. The code uses this value to determine when
to finish reading from the text file.

Working with XML

Extensible Markup Language (XML) is a text-based format for representing structured
data.

In XML, you can store both data and metadata (information about the data being stored).
For example, the following XML represents data for two customers:

<?xml version="1.0" encoding="utf-8"?>

<!--Customer List-->

<Customers>

 <Customer Id="ALFKI">

 <CompanyName>Alfreds Futterkiste</CompanyName>

 <Phone>030-0074321</Phone>

 </Customer>

 <Customer Id="EASTC">

 <CompanyName>Eastern Connection</CompanyName>

 <Phone>(171) 555-0297</Phone>

 </Customer>

</Customers>

Even without knowing anything about XML, you can understand the contents of this file
just by looking at them. XML consists of tags (contained within angle brackets) and data.
Tags always appear in pairs, with each opening tag matched by a closing tag. For example,
<Customers> is an opening tag, and </Customers> is the corresponding closing tag.

The first line of an XML document is the XML declaration:

<?xml version="1.0" encoding="utf-8"?>

XML tags that begin with <? are called processing instructions. This processing instruction
tells us that the document is an XML document, conforms to the XML version 1.0 specifica-
tions, and uses the UTF-8 character set for its data elements.

c06Understanding Databases.indd Page 167 2/28/11 3:21:20 PM f-392c06Understanding Databases.indd Page 167 2/28/11 3:21:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

168 | Lesson 6

An opening tag and closing tag together with their contents is called an element. For example,
the following is a single XML element from the above document:

<Phone>030-0074321</Phone>

This bit of code defines an element with the name Phone whose value is 030-0074321.
Elements can be nested, but they cannot overlap. For example, the following XML is invalid
because of the overlap between the CompanyName and Phone elements:

<Customer Id="EASTC">

 <CompanyName>Eastern Connection<Phone>

 </Phone>(171) 555-0297</CompanyName>

 </Customer>

</Customers>

XML documents are hierarchical in nature. Every XML document contains a single root
element that contains all the other nodes. An XML document can therefore be visualized
as a tree of nodes.

Elements can contain attributes. An attribute is a piece of data that further describes an
element. For example:

<Customer Id="ALFKI">

Here, the Customer element includes an attribute whose name is Id and whose value is
ALFKI.

Finally, an XML document can contain comments. Comments start with the characters
<!-- and end with the characters -->.

XML is often more complex than what is discussed in this section. However, these basics are
enough for you to understand most XML documents that you’ll likely run into until you start
working with XML in depth.

There are many ways in which you can work with XML data. The classes that work with
XML data are organized in the System.Xml namespace. This portion of the lesson focuses on
the following commonly used classes:

• XmlReader and XmlWriter: These classes provide a fast, noncached, forward-only way
to read or write XML data.

• XmlDocument: This class is an in-memory representation of XML data and allows
navigation and editing of the XML document.

In the following exercise, you use the XmlReader class to read the XML file name Customers.
xml in a sequential and forward-only manner.

READ FROM AN XML FILE

GET READY. To read from an XML file, do the following:

 1. Create a new Console Application project named WorkingWithXmlReader.

 2. Add the following code to the Main method of the Program class:

using (XmlReader reader =

 XmlReader.Create("Customers.xml"))

{

 while (reader.Read())

 {

c06Understanding Databases.indd Page 168 2/28/11 3:21:20 PM f-392c06Understanding Databases.indd Page 168 2/28/11 3:21:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 169

 if (reader.IsStartElement())

 {

 switch (reader.Name)

 {

 case "CompanyName":

 if (reader.Read())

 {

 Console.Write(

 "Company Name: {0}, ",

 reader.Value);

 }

 break;

 case "Phone":

 if (reader.Read())

 {

 Console.WriteLine(

 "Phone: {0}", reader.Value);

 }

 break;

 }

 }

 }

}

 3. Next, add the following using directive to the program:

using System.Xml;

 4. Now, add a new XML file named Customers.xml to the project. Make sure the xml file
contains the following data:

<?xml version="1.0" encoding="utf-8"?>

<!--Customer List-->

<Customers>

 <Customer Id="ALFKI">

 <CompanyName>Alfreds Futterkiste</CompanyName>

 <Phone>030-0074321</Phone>

 </Customer>

 <Customer Id="EASTC">

 <CompanyName>Eastern Connection</CompanyName>

 <Phone>(171) 555-0297</Phone>

 </Customer>

</Customers>

 Build the program. Copy the Customers.xml file to the program executable folder. Run
the program. You should see a list of all the company names and phone numbers.

c06Understanding Databases.indd Page 169 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 169 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

170 | Lesson 6

The code in this exercise first creates a new instance of XmlReader by using the XmlReader.
Create method. This will throw an exception if the file is not found. The program will termi-
nate when the XmlReader.Read method has nothing to read. You can use properties such as
Name and Value to access various portions of XML.

Working with DataSet

A DataSet is an in-memory representation of relational data.

A DataSet is an in-memory representation of relational data. Just like a database, a DataSet
can have tables, relations, and data-integrity constraints such as unique constraints or foreign-
key constraints. A DataSet is usually created by retrieving data from a data source such as a
database. Once you have created a DataSet, you can work with all the data in the DataSet
even when the link to the source data source is temporarily unavailable. When there are any
changes to the data, only the in-memory copy of the data is updated. Connection to the data
source is needed only when it is time to update the data source with the changes from the
DataSet. DataSet is very useful for creating disconnected applications. Disconnected applica-
tions are applications that can continue to function without a constant connection to network
resources such as databases.

All DataSet-related classes are part of the System.Data namespace. A DataSet object is cre-
ated by using the DataSet class. The DataSet consists of a collection of DataTable objects.
A DataTable is just like a relational database table. A DataTable object has a collection of
DataColumn objects that represent the columns in the table. The rows in the DataTable are
represented by the DataRow collection.

The DataAdapter acts as a bridge between the data source and the DataSet. The DataAdapter
stores the data connection and data commands needed to connect to the data source. The
DataAdapter also provides commands for retrieving data from the data source and commands
for updating the data source with any changes.

The .NET Framework provides three DataAdapter classes to work with different type of data
sources:

• The OdbcDataAdapter class is used to work with ODBC data sources.
The OdbcDataAdapter class is part of the System.Data.Odbc namespace.

• The OleDbDataAdapter class is used to work with OLEDB data sources.
The OleDbDataAdapter class is part of the System.Data.OleDb namespace.

• The SqlDataAdapter class is used to work with SQL Server databases.
The SQLDataAdapter class is part of the System.Data.SqlClient namespace.

You can also connect to a SQL Server database by using the OdbcAdapter and
OleDbAdapter classes. However, the SQLDataAdapter class is optimized for SQL Server.
Therefore, when working with SQL Server, it is preferable to use the SQLDataAdapter
class.

TAKE NOTE*

In a typical application that creates and updates a DataSet, you will need to carry out the
following steps:

 1. Build and fill each DataTable in the DataSet with data from the data source by using a
DataAdapter.

c06Understanding Databases.indd Page 170 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 170 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 171

 2. Change the data in the individual DataTable objects by adding, updating, or deleting
DataRow objects.

 3. Invoke the AcceptChanges method on the dataset. This method connects to the original
data sources and updates them with all the changes made to the DataSet since it was
loaded or since the last time AcceptChanges was called. Alternatively, you can call the
RejectChanges method to cancel all the changes that were made to the DataSet since it
was loaded or since the last time AcceptChanges was called.

In the following exercise, you use the classes discussed so far to read data from the SQL
Server’s Northwind database into a DataSet and then iterate over the Customer table to
display the order numbers for each customer.

READ FROM AN IN-MEMORY DATASET OBJECT

GET READY. To read from an in-memory DataSet Object, do the following:

 1. Create a new Console Application project named WorkingWithDataSet.

 2. Replace the code in the Program class with the following code. Be sure to
change the connection string to match the local path of the database file on
your computer:

static void Main(string[] args)

{

 WorkingWithDataSet();

}

static void WorkingWithDataSet()

{

 string cString = @"Data Source=.\SQLEXPRESS;"

 + @"AttachDbFilename=B:\SqlSampleDB\NORTHWND.MDF;"

 + "Integrated Security=True;"

 + "Connect Timeout=30;User Instance=True";

 SqlConnection northwindConnection =

 new SqlConnection(cString);

 string customerCommandText =

 "SELECT * FROM Customers";

 SqlDataAdapter customerAdapter =

 new SqlDataAdapter(

 customerCommandText, northwindConnection);

 string ordersCommandText =

 "SELECT * FROM Orders";

 SqlDataAdapter ordersAdapter =

 new SqlDataAdapter(

 ordersCommandText, northwindConnection);

c06Understanding Databases.indd Page 171 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 171 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

172 | Lesson 6

DataSet customerOrders = new DataSet();

customerAdapter.Fill(

 customerOrders, "Customers");

ordersAdapter.Fill(

 customerOrders, "Orders");

DataRelation relation =

 customerOrders.Relations.Add("CustomerOrders",

 customerOrders.Tables["Customers"]

 .Columns["CustomerID"],

 customerOrders.Tables["Orders"]

 .Columns["CustomerID"]);

foreach (DataRow customerRow in

 customerOrders.Tables["Customers"].Rows)

{

 Console.WriteLine(customerRow["CustomerID"]);

 foreach (DataRow orderRow in

 customerRow.GetChildRows(relation))

 Console.WriteLine("\t" +

 orderRow["OrderID"]);

}

 Console.WriteLine(

 "Press any key to continue . . .");

 Console.ReadKey();

}

 3. Add the following using directive to the program:

using System.Data;

using System.Data.SqlClient;

 4. Select Project > Set as Startup Project to set the project as the startup project for
the solution.

 5. Select Debug > Start Debugging (or press F5) to run the program. Notice that the
console window lists all the customers from the Customers table. Each CustomerID is
followed by the OrderID corresponding to that customer.

The code in this exercise first creates a DataSet with two DataTable objects, Customers
and Orders. The DataSet also creates a DataRelation object that establishes the relationship
between the Customers and the Orders table on the CustomerID column. This relationship
allows you to call the GetChildRow method on a customer row to retrieve the order rows
corresponding to each customer.

A DataSet can read and write data as XML documents. To write data as XML, use the
WriteXml method of the DataSet class. To read XML document data, use the ReadXml
method of the DataSet class.

TAKE NOTE*

CERTIFICATION READY
Do you understand
the various database
connection methods?
6.3

c06Understanding Databases.indd Page 172 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 172 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 173

S K I L L S U M M A R Y

IN THIS LESSON, YOU LEARNED THE FOLLOWING:

• A relational database organizes information into tables. A table is a list of rows and
columns.

• Relational database design is the process of determining the appropriate relational
database structure to satisfy the business requirements.

• Entity-relationship diagrams are used to model the entities, their attributes, and the
relationships among entities. The entity-relationship diagrams can help you in determine
what data needs to be stored in a database.

• The process of data normalization ensures that a database design is free of any problems
that could lead to loss of data integrity. Most design issues can be resolved by ensuring
that the tables satisfy the requirements of the third normal form.

• The Structured Query Language (SQL) provides statements such as SELECT, INSERT, UPDATE,
and DELETE to work with relational data.

• A stored procedure is a set of SQL statements that is stored in a database. Stored proce-
dures can be used by multiple applications.

• The XmlReader and XmlWriter classes provide a fast, noncached, forward-only way to read
or write XML data. The XmlDocument class is an in-memory representation of XML data
and allows navigation and editing of the XML document.

• The DataSet class represents an in-memory representation of relational data. The
DataAdapter class acts as a bridge between the data source and the DataSet. The
DataAdapter stores the data connection and data commands needed to connect to
the data source.

Fill in the Blank

Complete the following sentences by writing the correct word or words in the blanks provided.

 1. In order for a table to be in the _______________, none of the columns should have
multiple values in the same row of data.

 2. The _______________ requires that all non-key columns are functionally dependent on
the entire primary key.

 3. The _______________requires that there is no functional dependency among non-key
attributes.

 4. The basic building blocks for an entity-relationship diagram are _______________,
_______________, and _______________.

 5. The _______________ clause in a SELECT statement evaluates each row for a
condition and decides whether to include it in the result set.

 6. The object used with the using statement must implement the _______________
interface.

 7. T-SQL’s _______________ statement can be used to create a stored procedure.

■ Knowledge Assessment

c06Understanding Databases.indd Page 173 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 173 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

174 | Lesson 6

 8. In the process of _______________, you apply a set of rules to ensure that your
database design helps with data integrity and ease of maintenance in the future.

 9. You find classes for working with streams and backing stores in the _______________
namespace.

 10. The _______________ format is a hierarchical data representation format.

Multiple Choice

Circle the letter that corresponds to the best answer.

 1. Your application needs to store the product image out to a disk file. You’d like to minimize
the size of this disk file. Which of the following objects should you use to write the file?
a. FileStream
b. StreamWriter
c. BinaryWriter
d. XmlWriter

 2. Your C# program needs to return the total number of customers in a database. The program
will be used several times a day. What is the fastest way to return this information from
your program?
a. Write a SQL query and use the SqlCommand.ExecuteScalar method to execute the query.
b. Create a stored procedure to return the total number of customers, then use the

SqlCommand.ExecuteScalar method to execute the stored procedure.
c. Write a SQL query and use the SqlDataAdapter.Fill method to execute the query.
d. Create a stored procedure to return the total number of customers, then use the

SqlDataAdapter.Fill method to execute the stored procedure.

 3. You need to modify the records in a Products table by marking certain products
as Discontinued. However, you need to do this only when the UnitsInStock and
UnitsOnOrder are both zero. Which of the following SQL statements should you use?
a. INSERT
b. SELECT
c. UPDATE
d. DELETE

 4. You need to update the Region fields for customers in Japan. You write the following
SQL UPDATE statement:

UPDATE Customers

SET Region = 'EastAsia'

 You test the query on a test database and find that more records were affected than you
expected. You need to correct the SQL statement. What should you do?
a. Add a WHERE clause to the UPDATE statement.
b. Add an additional SET clause to the UPDATE statement.
c. Add a GROUP BY clause to the UPDATE statement.
d. Add a HAVING clause to the UPDATE statement.

 5. You are developing an application that needs to retrieve a list of customers from a SQL
Server database. The application should move through the list sequentially once, process-
ing each customer’s record. Which of the following classes should you use to hold the
customer list in order to achieve maximum performance?
a. DataSet
b. DataTable
c. DataView
d. SqlDataReader

c06Understanding Databases.indd Page 174 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 174 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Understanding Databases | 175

 6. The application you are developing needs to read data from a flat file that include items
such as a five-digit integer key, followed by a 20-character customer name, followed by
two date and time fields. Which of the following classes should you use?
a. FileStream
b. StreamReader
c. BinaryReader
d. DataReader

 7. You are developing an application that will need to copy data from a SQL Server view to
a DataSet. You name the DataSet object dsData. Which of the following methods should
you use to copy the data?
a. Fill
b. InsertCommand
c. SelectCommand
d. Update

 8. You are developing an application that manages customers and their orders. Which of the
following situations is not a good candidate for implementation with stored procedures in
your application?
a. Retrieving the list of all customers in the database
b. Retrieving the list of all orders for particular customers
c. Inserting a new order into the Orders table
d. Ad hoc querying by the database administrator

 9. Your application connects to a SQL Server database that contains a table called
Employees with the following columns:

 EmployeeID (int, identity)

 EmployeeType (char(1))

 EmployeeDate (datetime)

 You need to write a query that deletes all rows from the table where the EmployeeType
value is either C or T. You do not want to delete any other rows. Which statement
should you use?
a. DELETE FROM Employees

 WHERE EmployeeType LIKE '[CT]'

b. DELETE FROM Employees

 WHERE EmployeeType LIKE '[C-T]'

c. DELETE FROM Employees

 WHERE EmployeeType LIKE 'C' OR 'T'

d. DELETE * FROM Employees

 WHERE EmployeeType IN ('C', 'T')

 10. Your application includes a SqlDataAdapter object named sqlDataAdapter that connects
to the Employees table. Based on this SQLDataAdapter, your application also includes a
DataSet object dsEmployees. What line of code should you use to load the data from the
database into the DataSet object?
a. dsEmployees = sqlDataAdapter.Fill("Employees");

b. sqlDataAdapter.Fill("dsEmployees", "Employees");

c. sqlDataAdapter.Fill(dsEmployees);

d. sqlDataAdapter.Fill(dsEmployees, "Employees");

c06Understanding Databases.indd Page 175 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 175 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

176 | Lesson 6

■ Competency Assessment

Scenario 6-1: Creating an Entity-Relationship Diagram

A company has a number of employees, and each employee may be assigned to one or more
projects. In addition, each project can have one or more employees working on it. Draw an
entity-relationship diagram for this situation.

Scenario 6-2: Creating a Stored Procedure

You often need to generate a list of customers from a given country. Therefore, you decide to
create a stored procedure that accepts the name of country as a parameter and returns all the
customers from that country. How would you go about doing this?

■ Proficiency Assessment

Scenario 6-3: Normalizing Tables

You are converting an entity-relationship diagram into tables. You come up with the follow-
ing table design:

Books

BOOKID BOOKNAME CATEGORYID CATEGORYNAME

1 Cooking Light 1001 Cooking

2 Prophecy 1002 Mystery & Thriller

3 Shift 1003 Business

4 The Confession 1002 Mystery & Thriller

You need to apply normalization rules to ensure data integrity. How would you ensure that
the Books table is in the third normal form?

Scenario 6-4: Creating and Handling Events

You are working on an application that requires you to save customer information from the
Customers table of the Northwind database into an XML file. This XML file will be used
for various data-integration tasks. You need to make sure that the root node of the XML is
called Customers. The root node will then have a Customer node for each customer in the
Customers table. How should you accomplish this task?

c06Understanding Databases.indd Page 176 2/28/11 3:21:21 PM f-392c06Understanding Databases.indd Page 176 2/28/11 3:21:21 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

177

Appendix A
Software Development

Fundamentals: Exam 98-361

OBJECTIVE DOMAIN SKILL NUMBER LESSON NUMBER

Understanding Core Programming

Understand computer storage and data types. 1.1 1, 2

Understand computer decision structures. 1.2 1

Identify the appropriate method for handling repetition. 1.3 1

Understand error handling. 1.4 1

Understanding Object-Oriented Programming

Understand the fundamentals of classes. 2.1 2

Understand inheritance. 2.2 2

Understand polymorphism. 2.3 2

Understand encapsulation. 2.4 2

Understanding General Software Development

Understand application lifecycle management. 3.1 3

Interpret application specifications. 3.2

Understand algorithms and data structures. 3.3 3

Understanding Web Applications

Understand Web page development. 4.1 4

Understand Microsoft ASP.NET Web application development. 4.2 4

Understand Web hosting. 4.3 4

Understand Web services. 4.4 4

Understanding Desktop Applications

Understand Windows Forms applications. 5.1 5

Understand console-based applications. 5.2 5

Understand Windows services. 5.3 5

Understanding Databases

Understand relational database query methods. 6.1 6

Understand database query methods. 6.2 6

Understand database connection methods. 6.3 6

BMappA.indd Page 177 2/1/11 8:38:09 PM user-s146BMappA.indd Page 177 2/1/11 8:38:09 PM user-s146 /Users/user-s146/Desktop/Merry_X-Mas/New/Users/user-s146/Desktop/Merry_X-Mas/New

BMappA.indd Page 178 3/2/11 6:18:20 PM f-392BMappA.indd Page 178 3/2/11 6:18:20 PM f-392 /Users/f-392/Desktop/Nalini 23.9/ch05/Users/f-392/Desktop/Nalini 23.9/ch05

Index

179

�?, 167
@@IDENTITY, 163
��operator, 42
@Page directive, 99
& sign, 128

A
Abstract classes

creating, 50–51
defi ned, 50

Acceptance testing, 70
Access modifi ers, 34, 37, 48
Accessors, 36
Account property, 135
Ajax, 93
Algorithm. See also Sorting algorithm

decision tables, 3–4
defi ned, 2
fl owcharts, 2–3

Application lifecycle management (ALM)
design process, 67
release management, 68
requirements analysis, 66–67
software development, 67
software testing, 68–70. See also Testing

Application property, 101
Applications, desktop

console-based, 129–131
Windows Forms, 120–129
Windows Service, 131–137

Application state, 101. See also State management
Arrays

access, 71
allocation, 71
C# applications, 9–10
defi ned, 9, 70
internal representation, 71
operations, 71
performance and usage, 72

As operator, 53
ASP.NET

application development, 95–104
event handlers, 97
HTTP request/response process, 95
infrastructure, 95
Page class, 96
Page class, events, execution of, 98–99
@Page directive, 99
page life cycle, 96–99
page request process, 96

postback, 96, 97
state management, 99–104

Attribute, 168
Auto-implemented properties, 37–38

B
Base class

inheritance, 48–49
new keyword, 55–56
override keyword, 55–56

Binary code, 4
Binary fi les, 165
Binary number system, 4
Binary operators, 10
Black-box testing, 69
BubbleSort, 76–78

C
C# applications

arrays, 9–10
constants, 8
control structures, 17–22
data types, 8–9
imperative nature, 150
methods, 11
operators, 10–11
queries, running from, 153–155
stored procedures, running from, 161–164
structure, 6–8
using statement, 164
variables, 8
writing, 5

Call stack memory, 47
Cascading style sheets (CSS)

defi ned, 88
designing, 89
fi le, linking to an HTML fi le, 90–91

Case statement, 15
Casting

between types, 52–53
defi ned, 52
as operator, 53
is operator, 53

Class
abstract, creating, 50–51
access modifi er, 34
creating, 33–34
defi ned, 7, 33
derived, creating, 49

BM_Index.indd Page 179 3/9/11 10:04:43 PM user-F392BM_Index.indd Page 179 3/9/11 10:04:43 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

180 | Index

Client-side programming, 94–95
Command-line parameters, 129
CompareTo, 57
Console, 129
Console applications, 129–131
Constants, 8
Constructors, 35
Contains, 73, 74
Cookies, 100
CREATE PROCEDURE, 159–160

D
DataAdapter class, 170
Database, 143
Database connection methods

DataSet, 170–173
fl at fi les, 164–167
XML, 167–170

Database integrity, 144
Database Management System (DBMS), 143
Database query methods. See Structured Query Language (SQL)
Databases, relational

concepts, 143
data normalization, 146–149
defi ned, 142
design, 144
entity-relationship diagrams, 144–146
tables, 143

Data normalization
defi ned, 146
fi rst normal form, 147–148
second normal form, 148
third normal form, 149

DataSet
defi ned, 170
object, reading from, 171–172

DataSet class, 170, 172
Data structures

arrays, 70–72
linked lists, 74–76
queues, 72–73
stacks, 73–74

Data types, 8–9
Decision structures

defi ned, 11
if-else statement, 13–15
if statement, 11–13
switch statement, 15–17

Decision tables, 3–4
Default statement, 15
Delegates, 40, 123
Delete anomaly, 147
DELETE statement, 150, 159
Dequeue, 73
Derived class

inheritance, 48–50
new keyword, 55–56
override keyword, 55–56

Design process, 67

Disconnected applications, 170
Do-while loop, 19

E
Element, 168
Encapsulation, 33, 47–48
Enqueue, 73
Entity-relationship diagrams (ERD)

attribute, 144
database, relational, mapping to, 145–146
defi ned, 144
entity, 144
relationship, 145

EventArgs class, 41
EventHandler delegate, 41
Event handlers, 97
Events

defi ned, 40, 121
Page class, execution of, 98–99
publish and subscribe to, 41–42

Exceptions
defi ned, 24
handling, 24–25
try-catch-fi nally statement, 25–26

Extensible Markup Language (XML). See XML

F
Finally block, 25
First normal form, 147–148
Flat fi les

defi ned, 164
text fi le, read from and write to, 165–167

Flowcharts, 2–3
Foreach loop, 21
For loop, 20
FTP, 106
Fully qualifi ed class name, 7
Functional dependence, 148

G
Get accessor, 36

H
Heap memory, 47
Hidden fi elds, 100
High-level language, 4
<html> tag, 87
HttpCookie class, 100
Hypertext Markup Language (HTML)

defi ned, 86
document, creating, 87–88
header and body, 87
purpose of, 86–87
tags, 87

Hypertext Transfer Protocol (HTTP), 86, 95, 107

I
IComparable, 56–58
If-else statement, 13

BM_Index.indd Page 180 3/9/11 10:04:43 PM user-F392BM_Index.indd Page 180 3/9/11 10:04:43 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Index | 181

If statement, 11
 tag, 87
Inheritance

abstract class, 50–51
base class, 48
casting between types, 52–53
defi ned, 48
derived class, 48–50
from the object class, 51–52
as operator, 53
is operator, 53
sealed class, 50, 51

Initializer, 19
Insert anomaly, 146
INSERT statement, 150, 158–159
Installer, 135
Instance, 33
Integration testing, 69–70
Interfaces

defi ned, 56
icomparable, 56–58

Internet, versus the Web, 86
Internet Information Services (IIS), 104–106
Is operator, 53

J
JavaScript

Ajax, 93
defi ned, 92
in external fi les, advantages, 94
working with, 93–94

L
Linked lists

defi ned, 74
internal representation, 74–75
operations, 75–76
performance and usage, 76

<link> element, 91
Loop test, 19

M
Main method, 7–8, 11
Many-to-many relationship, 145
Memory allocation, 45–47
Methods

defi ned, 11
InitFields, 34–35
objects, 34–35
return statements, 34, 35
signatures, 34

Multiple Document Interface (MDI), 126–129

N
Namespace property, 110
Namespaces, 42–43
New keyword, 35, 55–56

O
Object-oriented programming

encapsulation, 47–48
inheritance, 48–53
interfaces, 56–58
objects, 33–44
polymorphism, 53–56
values and references, 44–47

Object-oriented thinking, 33
Objects

casting between types, 52–53
classes, creating, 33–34
constructors, 35
creating, 35–36
defi ned, 33, 35
delegates, 40
events, 40–42
in-memory DataSet, reading from, 171
methods, 34–35
namespaces, 42–43
new keyword, 35
properties, auto-implemented, 37–38
properties, creating, 36–37
static members, 43–44
this keyword, 38–39

One-to-many relationship, 144, 145
One-to-one relationship, 145
Operators

��, 42
defi ned, 10
precedence in C#, 10

Override keyword, 55–56

P
Parameterized stored procedures, 160–164
Peek, 73, 74
Polymorphism

defi ned, 53
using, 54–55

Pop, 74
Postback, 96, 97
Primary key, 144
Processing instructions, 167
Program, 4
Properties

accessors, 36
auto-implemented, 37–38
creating, 36–37
defi ned, 36
read-only, 37
write-only, 37

Push, 74

Q
Queries, SQL. See also Structured Query Language (SQL)

C# application, running from, 153–154
Visual Studio, running from, 152–153

QueryString property, 100
Query strings, 100

BM_Index.indd Page 181 3/9/11 10:04:43 PM user-F392BM_Index.indd Page 181 3/9/11 10:04:43 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

182 | Index

Queues
defi ned, 72
internal representation, 72
operators, 73
performance and usage, 73

QuickSort, 79–81

R
Recursion, 22
Recursive method, 23
Reference types, 44–45, 46–47
Regression testing, 70
Relational databases. See Databases, relational
Release management, 68
Repetition structures

do-while loop, 19–20
foreach loop, 21–22
for loop, 20–21
recursion, 22
recursive method, 23
while loop, 17–19

S
<script> element, 93
Sealed class, 50, 51
Second normal form, 148
SELECT statement, 150, 155–157
Server-side programming, 94–95
ServiceInstaller class, 135
ServiceProcessorInstaller class, 135
Session state, 101–104. See also State management
Set accessor, 36
Signature, 34
Simple Object Access Protocol (SOAP)

defi ned, 107
elements, 108

Software testing. See Testing
Sorting algorithm

BubbleSort, 76–78
QuickSort, 79–81

SQL. See Structured Query Language (SQL)
SQL Server databases

connecting to, 150–152
queries, C# applications, running from, 153–155
queries, Visual Studio, running from, 152–153

Stacks
internal representation, 73–74
operations, 74
performance and usage, 74

StartType property, 135
State management

application state, 101
client-side, 100
cookies, 100
defi ned, 99
hidden fi elds, 100
query strings, 100
server-side, 101
session state, 101–104
ViewState, 100

Static keyword, 43
Static members

creating, 43–44
defi ned, 43
this keyword, 44

Stored procedures
creating and running, 159–160
defi ned, 159
parameterized, creating, 160–161
parameterized, running from C#, 161–164
Visual Studio, creating from, 160

Structs, 44–45
Structured Query Language (SQL)

ad-hoc statements, 150
aggregate functions, 157
declarative nature, 149–150
DELETE statement, 150, 159
INSERT statement, 150, 158–159
SELECT statement, 150, 155–157
UPDATE statement, 150, 157–158

Switch block, 15
Switch statement, 15
System testing, 70

T
Tables, 143, 146–149
Termination expression, 19
Ternary operators, 10
Testing

acceptance, 70
black box, 69
integration, 69–70
levels, 69–70
methods, 69
regression, 70
system, 70
unit, 69
Web services, 110–112
white box, 69

Text fi les, reading and writing from, 165–167
Third normal form, 149
This keyword, 38–39, 44
Try block, 25
Try-catch-fi nally statement, 25–26
T-SQL. See Structured Query Language (SQL)

U
Unary operators, 10
Uniform Resource Locator (URL), 86
Unit testing, 69
Update anomaly, 147
UPDATE statement, 150, 157–158
Using directive, 7
Using statement, 164

V
Value keyword, 37
Value types, 44, 45, 46

BM_Index.indd Page 182 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 182 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Index | 183

Variables, 8
ViewState, 100
Virtual directory, 105–106
Visual inheritance, 123–126
Visual Studio

queries, running from, 152–153
Query Designer, 153
Windows Service, installing, 135–136
Windows Service installer, adding, 134–135
Windows Service template, 132–134

W
Web applications, deploying, 106
Web hosting

defi ned, 104
Internet Information Services (IIS), 104–105
virtual directories, creating, 105–106
Web applications, deploying, 106
Web sites, creating, 104

WebMethod attribute, 101
Web page development

cascading style sheets (CSS), 88–92
HTML, 86–88
JavaScript, 92–94
programming, client-side versus server-side, 94–95

WebService attribute, 101
Web Service Definition Language (WSDL), 108
Web services

client application, accessing from, 112–114
creating, 108–110
defi ned, 107
SOAP, 107–108
testing, 110–112
WebMethod attribute, 110

Web sites, 104–105
While loop

defi ned, 17
parts, 19

White-box testing, 69
Windows Forms applications

creating, 121–123
defi ned, 120
event model, 123
Multiple Document Interface (MDI), 126–129
visual inheritance, 123–126

Windows Installer, 106
Windows Services

creating, 132–134
defi ned, 131
examples of, 131
installer, adding to, 134–135
installing, 135–136
working with, 136–137

World Wild Web, 86

X
xcopy, 106
XML

attributes, 168
defi ned, 167
elements, 168
fi les, reading from, 168–170
tags, 167

XmlDocument, 168
XmlReader, 168
XmlWriter, 168

BM_Index.indd Page 183 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 183 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 184 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 184 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 185 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 185 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 186 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 186 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 187 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 187 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 188 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 188 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 189 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 189 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 190 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 190 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 191 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 191 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 192 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 192 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

Notes

BM_Index.indd Page 193 3/9/11 10:04:44 PM user-F392BM_Index.indd Page 193 3/9/11 10:04:44 PM user-F392 /Users/user-F392/Desktop/Users/user-F392/Desktop

	Copyright
	Foreword from the Publisher
	Preface
	Illustrated Book Tour
	Conventions and Features Used in This Book
	Instructor Support Program
	Student Support Program
	Acknowledgments
	Brief Contents
	Contents
	Lesson 1 Introduction to Programming
	LESSON SUMMARY MATRIX
	KEY TERMS
	Understanding Computer Programming
	Introducing Algorithms
	INTRODUCING FLOWCHARTS
	INTRODUCING DECISION TABLES

	Introducing C#
	UNDERSTANDING THE STRUCTURE OF A C# PROGRAM
	UNDERSTANDING VARIABLES
	UNDERSTANDING CONSTANTS
	UNDERSTANDING DATA TYPES
	UNDERSTANDING ARRAYS
	UNDERSTANDING OPERATORS
	UNDERSTANDING METHODS

	Understanding Decision Structures
	The If Statement
	The if-else Statement
	The Switch Statement

	Understanding Repetition Structures
	Understanding the While Loop
	Understanding the Do-While Loop
	Understanding the For Loop
	Understanding the Foreach Loop
	Understanding Recursion

	Understanding Exception Handling
	Handling Exceptions
	Using Try-Catch-Finally

	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Lesson 2 Introduction to Object Oriented Programming
	LESSON SKILL SUMMARY
	KEY TERMS
	Understanding Objects
	Thinking in an Object-Oriented Way
	Understanding Classes
	UNDERSTANDING METHODS
	UNDERSTANDING CONSTRUCTORS
	CREATING OBJECTS
	UNDERSTANDING PROPERTIES
	UNDERSTANDING AUTO-IMPLEMENTED PROPERTIES
	USING THE THIS KEYWORD
	UNDERSTANDING DELEGATES
	UNDERSTANDING EVENTS
	UNDERSTANDING NAMESPACES
	UNDERSTANDING STATIC MEMBERS

	Understanding Values and References
	Understanding Structs
	Understanding Memory Allocation

	Understanding Encapsulation
	Understanding Access Modifiers

	Understanding Inheritance
	Understanding Abstract and Sealed Classes
	Inheriting from the Object Class
	Casting between Types
	USING THE IS OPERATOR
	USING THE AS OPERATOR

	Understanding Polymorphism
	Understanding the Override and New Keywords

	Understanding Interfaces
	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Lesson 3 Understanding General Software Development
	LESSON SKILL SUMMARY
	KEY TERMS
	Understanding Application Lifecycle Management
	Understanding Requirements Analysis
	Understanding the Design Process
	Understanding Software Development
	Understanding Software Testing
	Understanding Release Management

	Understanding Testing
	Understanding Testing Methods
	Understanding Testing Levels

	Understanding Data Structures
	Understanding Arrays
	INTERNAL REPRESENTATION
	COMMON OPERATIONS
	PERFORMANCE AND USAGE

	Understanding Queues
	INTERNAL REPRESENTATION
	COMMON OPERATIONS
	PERFORMANCE AND USAGE

	Understanding Stacks
	INTERNAL REPRESENTATION
	COMMON OPERATIONS
	PERFORMANCE AND USAGE

	Linked Lists
	INTERNAL REPRESENTATION
	COMMON OPERATIONS
	PERFORMANCE AND USAGE

	Understanding Sorting Algorithms
	Understanding BubbleSort
	Understanding QuickSort

	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Lesson 4 Understanding Web Applications
	LESSON SKILL SUMMARY
	KEY TERMS
	Understanding Web Page Development
	Understanding HTML
	Understanding Cascading Style Sheets
	DESIGNING CASCADING STYLE SHEETS

	Understanding JavaScript
	Understanding Client-Side vs. Server-Side Programming

	Understanding ASP.NET Application Development
	Understanding ASP.NET Page Life Cycle and Event Model
	Understanding State Management
	INTRODUCING CLIENT-SIDE STATE MANAGEMENT
	INTRODUCING SERVER-SIDE STATE MANAGEMENT

	Understanding IIS Web Hosting
	Understanding Internet Information Services
	Creating Virtual Directories and Web Sites
	Deploying Web Applications

	Understanding Web Services Development
	Introducing SOAP
	Introducing WSDL
	Creating Web Services
	Consuming Web Services

	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Lesson 5 Understanding Desktop Applications
	LESSON SKILL MATRIX
	KEY TERMS
	Understanding Windows Forms Applications
	Designing a Windows Form
	Understanding the Windows Form Event Model
	Using Visual Inheritance
	Understanding Multiple Document Interface (MDI) Applications

	Understanding Console-Based Applications
	Working with Command-Line Parameters

	Understanding Windows Services
	Creating a Windows Service

	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Lesson 6 Understanding Databases
	LESSON SKILL MATRIX
	KEY TERMS
	Understanding Relational Database Concepts
	Understanding Databases
	Understanding Relational Database Concepts
	Understanding Relational Database Design
	Understanding Entity-Relationship Diagrams
	MAPPING ERDs TO A RELATIONAL DATABASE

	Understanding Data Normalization
	UNDERSTANDING THE FIRST NORMAL FORM
	UNDERSTANDING THE SECOND NORMAL FORM
	UNDERSTANDING THE THIRD NORMAL FORM

	Understanding Database Query Methods
	Working with SQL Queries
	CONNECTING TO A SQL SERVER DATABASE
	RUNNING SQL QUERIES
	SELECTING DATA
	UPDATING DATA
	INSERTING DATA
	DELETING DATA

	Working with Stored Procedures
	CREATING AND RUNNING A STORED PROCEDURE
	WORKING WITH PARAMETERIZED STORED PROCEDURES

	Understanding Database Connection Methods
	Working with Flat Files
	Working with XML
	Working with DataSet

	SKILL SUMMARY
	Knowledge Assessment
	Competency Assessment
	Proficiency Assessment

	Appendix A
	Index

